This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
0 2020-03-10
The dataset of spectral reflectance of canopy leafs observed by the integrating sphere was obtained by ASD Spectroradiometer (350~2 500 nm) and integrating spheres from BNU and the reference board (40% before Jun. 15 and 20% hereafter), in the Linze station foci experimental area. Maize quadrate, the desert green quadrate and withered scrub quadrate in Linze station (on May 28, 30, Jun. 19, 30 and Jul. 9), Wulidun farmland quadrates (on Jun. 24, 29 and Jul. 11) and the desert strips were measured. According to the fact that the ratio of the two DN values equals that of their reflectivity, the reflectivity and the tranmittivity can be calculated with the caliberation coefficient, reflection DN of the observed objects and reference plates. The reflectivity and the tranmittivity of interior vegetation leaves can be got by the integrating spheres. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt).
0 2019-09-15
On August 22, 2018, a DJI camera was used in the fixed sample of Lancang River headwaters. The overlap degree of adjacent photos was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2.5 cm, a shooting area of 1000m x 1000m and a DSM resolution of 4.5 cm. Due to the communication failure, the middle four airstrips were not photographed, so there was a band in the middle of the image missing.
0 2020-06-03
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in in No. 2 and 3 quadrates of the A'rou foci experimental areas on Mar. 15, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:35 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Only corner points of each subsite were chosen for observations. In No. 2 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In No. 3 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, soil volumetric moisture by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in No. 1 quadrate of A'rou. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
0 2019-05-23
The dataset of diurnal change of FPAR observations was obtained by the quantum meter in the Linze grassland foci experimental area. Incident and reflected radiation of canopy, and land surface in reed, saline grass, alfalfa, cumin and barley were measured and diurnal changes of PAR and Fpar were also acquired. Observations were carried out: In plot E (barley) and cumin field on Jun. 6, 2008; plot D (alfalfa) and plot E on Jun. 11; plot D and E on Jun. 15; plot E on Jun. 16; plot A (reed) on Jun. 20; plot B (saline) on Jun. 22; plot D and E on Jun. 23; plot B (saline) on Jun. 24; plot A and plot E on Jun. 29. 14 Excel files, one Word and one .TXT were archived. See Water: The dataset of setting of the sampling plots and stripes in the Linze grassland foci experimental area for more information.
0 2019-05-23
This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 12 July to 31 December, 2013. The site (101.134° E, 41.990° N) was located in the Populus and Tamarix surface, Ejin Banner in Inner Mongolia. The elevation is 874 m. The EC was installed at a height of 22 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of sonic anemometer, data during 16 August to 17 September were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-14
The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF;
0 2020-03-27
The data set contains meteorological observation data of E’bao station upstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in qinghai qilian county E’bao town grassland, the underlying surface is alpine grassland.The latitude and longitude of the observation point are 100.9151E, 37.9492N, and 3294m above sea level.The air temperature and relative humidity sensors are set up at 5m, facing due north.The barometer is installed in an anti-skid box on the ground;The inverted bucket rain gauge is installed at 10m;Wind speed and direction sensors are set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, in the south due to 2m from the meteorological tower.The soil moisture probe is buried 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, directly to the south of 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm, in the south due to 2m from the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The four-component radiation and infrared temperature were between October 11, 2015 and November 05, 2015.11.1-11.5 re-adjustment of observation tower instruments, data missing;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
0 2020-04-10
The dataset is Lai data of ground sample points in Heihe River Basin, collected by LAI-2000 canopy analyzer. The collection area is located in Zhangye rural demonstration base, Ejina Banner, Jiuquan Satellite Center (2011) and other areas. The main measured vegetation is corn. The Lai value of maize was obtained by using lai2000, and the observation was repeated twice in the mode of one up four down. Cd202 was used to obtain the leaf area of each leaf of maize plant, and three maize plants were collected.
0 2020-07-30
The Greenland Ice Sheet Project Two (GISP2), initiated by the United States, has provided detailed oxygen isotope data for a time span of more than 100,000 years, covering almost the entire glacial-interglacial cycle. These data include the oxygen isotope changes from 818 to 1987, with a clear record showing that the Little Ice Age was the coldest period of the past 1000 years. Fluctuating warming occurred from 1850 to 1987, and the changes were consistent with those of GRIP, NGRIP and the latest NEEM ice core obtained in Greenland. This finding indicated that the snow and ice records from the Greenland ice sheet were highly consistent. The physical meaning of each variable is as follows: First column: ice core depth; second column: oxygen isotope value; third column: time
0 2019-09-15
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn