• 高亚洲地区雪水当量数据集(2002-2011)

    Snow water equivalent (the product of snow depth and density) is an important factor reflecting the change in snow cover on the ground surface, and it is also an important parameter in surface hydrological models and climatic models. As the “Headwaters of Asia”, the Tibetan Plateau is the source of several major rivers, which are fed with glacier and snow meltwater. Based on the sensitivity of passive microwave radiation to snow, these monitoring data enable long-term inversion of snow water equivalents in the High Asia region. The data set includes daily snow water equivalent, monthly snow water equivalent and five-day snow water equivalent, and these data can be applied in analyses of local hydrology, animal husbandry production and other fields.

    0 2022-06-24

  • 青海省自然灾害统计数据(1950-2000)

    This data set contains information on natural disasters in Qinghai over nearly 50 years, including the times, places and the consequences of natural disasters such as droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms, pest plagues, rats, and geological disasters. Qinghai Province is located in the northeastern part of the Tibetan Plateau and has a total area of 720,000 square kilometers. Numerous rivers, glaciers and lakes lie in the province. Because two mother rivers of the Chinese nation, the Yangtze River and the Yellow River, and the famous international river—the Lancang River—originated here, it is known as the "Chinese Water Tower"; there are 335,000 square meters of available grasslands in the province, and the natural pasture area ranks fourth in the country after those of Inner Mongolia, Tibet and Xinjiang. There are various types of grasslands, abundant grassland resources, and 113 families, 564 genera and 2100 species of vascular plants, which grow and develop under the unique climatic condition of the Tibetan Plateau and strongly represent the characteristics of the plateau ecological environment. As the main part of the Tibetan Plateau, Qinghai Province is one of the centers of the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the study of climate and ecological environment in the international field of sciences and technology. The terrain and land-forms in Qinghai are complex, with interlaced mountains, valleys and basins, widely distributed snow and glaciers, the Gobi and other deserts and grassland. Complex terrain conditions, high altitudes and harsh climatic conditions make Qinghai a province with frequent meteorological disasters. The main meteorological disasters include droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms. The data are extracted from the Qinghai Volume of Chinese Meteorological Disaster Dictionary, with manual entry, summarizing and proofreading.

    0 2022-06-21

  • 中国及其周边地区冰川作用流域边界数据集(1950-2020)

    Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.

    0 2022-06-20

  • 冰芯同位素与净积累数据集(1900-2011)

    Among many indicators reflecting changes in climate and environment, the stable isotope index of ice core is an indispensable parameter in ice core record research, and it is one of the most reliable means and the most effective way to restore past climate change. Meanwhile, ice core accumulation is a direct record of precipitation on the glacier, and high-resolution ice core records ensure continuity of precipitation records. Therefore, ice core records provide an effective means of restoring changes in precipitation. Stable isotopes from ice cores drilled throughout the TP have been used to reconstruct climate histories extending back several thousands of years. This dataset provides data support for studying climate change on the Tibetan Plateau.

    0 2022-06-20

  • 中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2021)

    Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.

    0 2022-05-16

  • 中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2

    The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the previous version released in 2019, Western China Daily 1km spatial resolution all-weather land surface temperature data set (2003-2018) V1, this data set (V2) adopts a new preparation method, namely satellite thermal infrared remote sensing reanalysis data integration method based on new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST in daytime / night, and its MBE is -0.42-0.25 K / - 0.35-0.19 K; The root mean square error (RMSE) was 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; Under the condition of non clear sky, the MBE of this data set in daytime / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K; The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2021 and will be updated continuously; The time resolution is twice a day (corresponding to the two transit times of aqua MODIS in the daytime and at night); The spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this data set is limited to Western China and its surrounding areas (72 ° E-104 ° E,20 ° N-45 ° N)。 Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating modem resolution spatial seamless LST – Tibetan Plateau) for user's convenience.

    0 2022-05-16

  • 中国不同相态降水(降雪、雨夹雪和降雨)及其湿球温度阈值格点数据集(1961-2016)

    Different forms of precipitation (snow, sleet, and rain) have divergent effects on the Earth’s surface water and energy fluxes. Therefore, discriminating between these forms is of significant importance, especially under a changing climate. We applied a state-of-the-art parameterization scheme with wet-bulb temperature, relative humidity, surface air pressure, and elevation as inputs, as well as observational gridded datasets with a maximum spatial resolution of 0.25◦, to generate a gridded dataset of different forms of daily precipitation (snow, sleet, and rain) and their temperature threshold across mainland China from 1961-2016. The annual snow, sleet, and rain amount were further calculated. The dataset may benefit various research communities, such as cryosphere science, hydrology, ecology, and climate change.

    0 2022-06-17

  • 青藏高原湖泊表层沉积物、达则错湖泊悬浮物brGDGTs数据集

    In recent years, branched chain glycerol dialkyl glycerol tetraethers (brGDGTs) derived from microbial cell membrane lipids are sensitive to environmental parameters (temperature and pH, etc.) and are widely used in the quantitative reconstruction of paleoenvironment. Based on the surface sediments of lakes in the Qinghai Tibet Plateau and brGDGTs in the surface sediments of other lakes published in China, we developed a new brGDGT-air temperature calibration. By collecting the annual suspended particulate matter of Dagze Co and analyzing brGDGTs, the distribution of brGDGTs in different water column layers were reconstructed. Combined with the modern observation results and the new calibration, using the results of brGDGT in the sediments of Xiada Co, the atmospheric temperature changes in the western Qinghai Tibet Plateau in the past 2000 years are reconstructed. This result provides an important theoretical reference for the reconstruction of temperature by brGDGTs in the future.

    0 2022-06-15

  • 中国雪深长时间序列数据集(1979-2021)

    This data set is an upgraded version of "China snow depth long time series data set (1978-2012)". The long time series data set of snow depth in China (1979-2021) adopts longitude and latitude projection, and the data is floating-point. Data sets are stored by year. Each year is a compressed package, and each compressed package contains daily snow depth files. The daily snow depth is stored in a TXT file named "yyyyddd.txt", where yyyy stands for year, DDD stands for Julian date, and the unit of snow depth is cm. For example, 2005001 Txt represents this ASCII file to describe the snow cover in China on the first day of 2005. The ASCII code file of the data set is composed of a header file and the main content. The header file consists of 6 lines of description information, such as the number of rows, the number of columns, the coordinates of the x-axis center point, the y-axis center point, the grid size, and the label value of the no data area. The main content is a two-dimensional group composed of the number of rows and columns. The unit of snow depth is cm. Because the space described by all ASCII files in the data set is nationwide in China, the header files of these files are unchanged. Now the header files are excerpted as follows (where xllcenter, yllcenter and cellsize are in degrees): Ncols 321 Nrows 161 Xllcenter 60 Yllcenter 15 Cellsize 0.25 NoData_ Value -1

    0 2022-06-15

  • 全球星载激光测高高程控制点数据集(2003-2009)

    This data set is the global high accuracy global elevation control point dataset, including the geographic positioning, elevation, acquisition time and other information of each elevation control point. The accuracy of laser footprint elevation extracted from satellite laser altimetry data is affected by many factors, such as atmosphere, payload instrument noise, terrain fluctuation in laser footprint and so on. The dataset extracted from the altimetry observation data of ICESat satellite from 2003 to 2009 through the screening criteria constructed by the evaluation label and ranging error model, in order to provide global high accuracy elevation control points for topographic map or other scientific fields relying on good elevation information. It has been verified that the elevation accuracy of flat (slope<2°), hilly (2°≤slope<6°), and mountain (6°≤slope<25°) areas meet the accuracy requirements of 0.5m, 1.5m, and 3m respectively.

    0 2022-04-15