The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
0 2022-07-13
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
0 2022-07-13
Based on GRACE Level-1b satellite gravity data, a time series of mass change over Greenland for the period 2002 to 2016, with a spatial resolution of 1 degree × 1 degree and a time resolution of one month was developed by the satellite gravity team led by Professor Shen Yunzhong from Tongji University. The reference time of this time series is the mean time span between January 2004 and December 2009. During data processing, ICE5G model was used to reduce the effect of GIA, and the contribution of GAD was added back by using AOD1B RL06 from GFZ
0 2022-07-07
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
0 2022-07-06
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
0 2022-07-05
Through the observation of tissue sections of root system, stem and leaf of Ammopiptanthus mongolicus, it is found that Ammopiptanthus mongolicus has morphological characteristics of efficient absorption, transportation and storage of water. Through the study of physiology and biochemistry of Ammopiptanthus mongolicus, the physiological and molecular mechanism of Ammopiptanthus mongolicus adapting to water stress through osmotic adjustment under drought stress was preliminarily confirmed. Through the study of physiological characteristics of Ammopiptanthus mongolicus under drought conditions, the change rule of proline accumulation with the process of drought stress was found, which may participate in the regulation mechanism of Ammopiptanthus mongolicus adapting to water stress as an important osmotic regulator. Furthermore, 7 full-length genes involved in proline synthesis, metabolism and transport of Ammopiptanthus mongolicus were cloned and obtained.
0 2022-06-28
Retrogressive thaw slumps (RTSs) are slope failures caused by the thawing of ice-rich permafrost. Once developed, they usually retreat at high speeds (meters to tens of meters) towards the upslope direction, and the mudflow may destroy infrastructure and release carbon stored in frozen ground. RTSs are frequently distributed in permafrost areas and increase dramatically but lack investigation. Qinghai Tibet Engineering Corridor crosses the permafrost, links the inland and the Tibet. However, in this critical area, we lack knowledge of the distribution and impact of RTSs. To compile the first comprehensive inventory of RTSs, this study uses an iterative semi-automatic method based on deep learning and manual inspection to delineate RTSs in 2019 images. The images from PlanetScope CubeSat have a resolution of 3 meters, have four bands, cover a corridor area of approximately 54,000 square kilometers. The method combines the high efficiency and automation of deep learning and the reliability of the manual inspection to map the entire region ninth, which minimize the missings and misidentification. The manual inspection is based on geomorphic features and temporal changes (2016 to 2020) of RTSs. The inventory which includes 875 RTSs with their attributes, including identification, Longitude and Latitude, possibilities and time, provides a benchmark dataset for quantifying permafrost degradation and its impact.
0 2022-06-27
Snow water equivalent (the product of snow depth and density) is an important factor reflecting the change in snow cover on the ground surface, and it is also an important parameter in surface hydrological models and climatic models. As the “Headwaters of Asia”, the Tibetan Plateau is the source of several major rivers, which are fed with glacier and snow meltwater. Based on the sensitivity of passive microwave radiation to snow, these monitoring data enable long-term inversion of snow water equivalents in the High Asia region. The data set includes daily snow water equivalent, monthly snow water equivalent and five-day snow water equivalent, and these data can be applied in analyses of local hydrology, animal husbandry production and other fields.
0 2022-06-24
This data set contains information on natural disasters in Qinghai over nearly 50 years, including the times, places and the consequences of natural disasters such as droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms, pest plagues, rats, and geological disasters. Qinghai Province is located in the northeastern part of the Tibetan Plateau and has a total area of 720,000 square kilometers. Numerous rivers, glaciers and lakes lie in the province. Because two mother rivers of the Chinese nation, the Yangtze River and the Yellow River, and the famous international river—the Lancang River—originated here, it is known as the "Chinese Water Tower"; there are 335,000 square meters of available grasslands in the province, and the natural pasture area ranks fourth in the country after those of Inner Mongolia, Tibet and Xinjiang. There are various types of grasslands, abundant grassland resources, and 113 families, 564 genera and 2100 species of vascular plants, which grow and develop under the unique climatic condition of the Tibetan Plateau and strongly represent the characteristics of the plateau ecological environment. As the main part of the Tibetan Plateau, Qinghai Province is one of the centers of the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the study of climate and ecological environment in the international field of sciences and technology. The terrain and land-forms in Qinghai are complex, with interlaced mountains, valleys and basins, widely distributed snow and glaciers, the Gobi and other deserts and grassland. Complex terrain conditions, high altitudes and harsh climatic conditions make Qinghai a province with frequent meteorological disasters. The main meteorological disasters include droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms. The data are extracted from the Qinghai Volume of Chinese Meteorological Disaster Dictionary, with manual entry, summarizing and proofreading.
0 2022-06-21
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
0 2022-06-20
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn