• Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.

    View Details
  • This data set is based on China's second inventory data, Landsat series optical image data with a spatial resolution of 30 meters and cloud coverage of less than 10% and SRTM and other data using ArcGIS, ENVI, Google Earth and other processing software and extracting the glacial lake boundary within 10 km of the glacier boundary by artificial visual interpretation. In addition, the data set adds attributes such as glacial lake type, the mountain range, the province, and the basin to the data as well as quality checking and accuracy verification for the interpreted data. The spatial resolution is 30 meters. It consists of two parts: the glacial lake distribution area vector file and the Inventory Data set of glacial lakes in west China in 2015. It can provide reference data for glacial lake-glacier coupling, water resource utilization and management in west China and can also be used as basic data for regional climate change and cryospheric studies.

    View Details
  • The long-term sequence data set of lake areas on the Tibetan Plateau contains area data of 364 lakes with areas greater than 10 square kilometers from 1970s to 2013. Based on Landsat images, Landsat data in October are mainly used, and one data is taken every three years to reduce seasonal variation and make the available data reach the maximum. The data set is extracted by the NDWI Water Index, and each lake undergoes manual visual inspection and edition. The data set can be used to study lake change, lake water balance and climate change on the Tibetan Plateau. Data type: Vector data. Projection: WGS84.

    View Details
  • Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.

    View Details
  • These datasets include mean annual ground temperature (MAGT) at the depth of zero annual amplitude (approximately 3 m to 25 m), active layer thickness (ALT), the probability of the permafrost occurrence, and the new permafrost zonation based on hydrothermal condition for the period of 2000-2016 in the Northern Hemisphere with an 1-km resolution by integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy, and thus more accurate than previous circumpolar maps.

    View Details
  • Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM2M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours (or 6 hours), daily and yearly scales.

    View Details
  • This dataset contains five types of boundaries. 1. TPBoundary_ 2500m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 2500m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 2. TPBoundary_ 3000m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 3000m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 3. TPBoundary_ HF (high_frequency): This boundary is defined according to 2 previous studies. Bingyuan Li (1987) had a systematic discussion on the principles for determining the extent of the Tibetan Plateau and the specific boundaries. From the perspective of the formation and basic characteristics of the Tibetan Plateau, he proposed the basic principles for determining the extent of the Tibetan Plateau based on the geomorphological features, the plateau surface and its altitude, while considering the integrity of the mountain. Yili Zhang (2002) determined the extent and boundaries of the Tibetan Plateau based on the new results of research in related fields and years of field practice. He combined information technology methods to precisely locate and quantitatively analyze the extent and boundary location of the Tibetan Plateau, and concluded that the Tibetan Plateau in China extends from the Pamir Plateau in the west to the Hengduan Mountains in the east, from the southern edge of the Himalayas in the south to the northern side of the Kunlun-Qilian Mountains in the north. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the Announcement on Adding Geographical Names for Public Use in the Southern Tibetan Region (First Batch), adding six geographical names in the southern Tibetan region, including Wo’gyainling, Mila Ri, Qoidêngarbo Ri, Mainquka, Bümo La, and Namkapub Ri. 4. TPBoundary_ New (2021): Along with the in-depth research on the Tibetan Plateau, the improvement of multidisciplinary research and understanding inside and outside the plateau, and the progress of geographic big data and Earth observation science and technology, the development of the 2021 version of the Tibetan Plateau boundary data by Yili Zhang and et al. was completed based on the comprehensive analysis of ASTER GDEM and Google Earth remote sensing images. The range boundary starts from the northern foot of the West Kunlun Mountain-Qilian Mountain Range in the north and reaches the southern foot of the Himalayas and other mountain ranges in the south, with a maximum width of 1,560 km from north to south; from the western edge of the Hindu Kush Mountains and the Pamir Plateau in the west to the eastern edge of the Hengduan Mountains and other mountain ranges in the east, with a maximum length of about 3,360 km from east to west; the latitude and longitude range is 25°59′30″N~40°1′0″N, 67°40′37″E~104°40′57″E, with a total area of 3,083,400km2 and an average altitude of about 4,320m. Administratively, the Tibetan Plateau is distributed in nine countries, including China, India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. 5. TPBoundary_ Rectangle: The rectangle was drawn according to the range of Lon (63~105E) and Lat (20~45N). The data are in latitude and longitude projection WGS84. As the basic data, the boundary of the Tibetan Plateau can be used as a reference basis for various geological data and scientific research on the Tibetan Plateau.

    View Details
  • This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C

    View Details
  • A multi-layer soil particle-size distribution dataset (sand, silt and clay content), based on USDA (United States Department of Agriculture) standard for regional land and climate modelling in China. was developed The 1:1,000,000 scale soil map of China and 8595 soil profiles from the Second National Soil Survey served as the starting point for this work. We reclassified the inconsistent soil profiles into the proper soil type of the map as much as possible because the soil classification names of the map units and profiles were not quite the same. The sand, silt and clay maps were derived using the polygon linkage method, which linked soil profiles and map polygons considering the distance between them, the sample sizes of the profiles, and soil classification information. For comparison, a soil type linkage was also generated by linking the map units and soil profiles with the same soil type. The quality of the derived soil fractions was reliable. Overall, the map polygon linkage offered better results than the soil type linkage or the Harmonized World Soil Database. The dataset, with a 1-km resolution, can be applied to land and climate modelling at a regional scale. Data characteristics: projection:projection Coverage: China Resolution: 0.00833 (about 1 km) Data format: FLT, TIFF Value range: 0%-100% Document describing: Floating point raster files include: Sand1. FLT, clay1. FLT -- surface (0-30cm) sand, clay content. Sand2. FLT, clay2. FLT -- content of sand and clay in the bottom layer (30-100cm). PSD. HDR -- header file: Ncols - the number of columns Nrows- rows Xllcorner - latitude in the lower left corner Yllcorner - longitude of the lower left corner Cellsize - cellsize NODATA_value - a null value byteorder - LSBFIRST, Least Significant Bit First TIFF raster files include: Sand1. Tif, clay1. Tif - surface (0-30cm) sand, clay content. Sand2. Tif, clay2. Tif - bottom layer (30-100cm) sand, clay content.

    View Details
  • The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.

    View Details