• The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.

    View Details
  • The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)

    View Details
  • This data set is based on China's second inventory data, Landsat series optical image data with a spatial resolution of 30 meters and cloud coverage of less than 10% and SRTM and other data using ArcGIS, ENVI, Google Earth and other processing software and extracting the glacial lake boundary within 10 km of the glacier boundary by artificial visual interpretation. In addition, the data set adds attributes such as glacial lake type, the mountain range, the province, and the basin to the data as well as quality checking and accuracy verification for the interpreted data. The spatial resolution is 30 meters. It consists of two parts: the glacial lake distribution area vector file and the Inventory Data set of glacial lakes in west China in 2015. It can provide reference data for glacial lake-glacier coupling, water resource utilization and management in west China and can also be used as basic data for regional climate change and cryospheric studies.

    View Details
  • This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.

    View Details
  • Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.

    View Details
  • A multi-layer soil particle-size distribution dataset (sand, silt and clay content), based on USDA (United States Department of Agriculture) standard for regional land and climate modelling in China. was developed The 1:1,000,000 scale soil map of China and 8595 soil profiles from the Second National Soil Survey served as the starting point for this work. We reclassified the inconsistent soil profiles into the proper soil type of the map as much as possible because the soil classification names of the map units and profiles were not quite the same. The sand, silt and clay maps were derived using the polygon linkage method, which linked soil profiles and map polygons considering the distance between them, the sample sizes of the profiles, and soil classification information. For comparison, a soil type linkage was also generated by linking the map units and soil profiles with the same soil type. The quality of the derived soil fractions was reliable. Overall, the map polygon linkage offered better results than the soil type linkage or the Harmonized World Soil Database. The dataset, with a 1-km resolution, can be applied to land and climate modelling at a regional scale. Data characteristics: projection:projection Coverage: China Resolution: 0.00833 (about 1 km) Data format: FLT, TIFF Value range: 0%-100% Document describing: Floating point raster files include: Sand1. FLT, clay1. FLT -- surface (0-30cm) sand, clay content. Sand2. FLT, clay2. FLT -- content of sand and clay in the bottom layer (30-100cm). PSD. HDR -- header file: Ncols - the number of columns Nrows- rows Xllcorner - latitude in the lower left corner Yllcorner - longitude of the lower left corner Cellsize - cellsize NODATA_value - a null value byteorder - LSBFIRST, Least Significant Bit First TIFF raster files include: Sand1. Tif, clay1. Tif - surface (0-30cm) sand, clay content. Sand2. Tif, clay2. Tif - bottom layer (30-100cm) sand, clay content.

    View Details
  • This data set is collected from the supplementary information part of the paper: Yao, T. , Thompson, L. , & Yang, W. . (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5. This paper report on the glacier status over the past 30 years by investigating the glacial retreat of 82 glaciers, area reductionof 7,090 glaciers and mass-balance change of 15 glaciers. This data set contains 8 tables, the names and content are as follows: Data list: The data name list of the rest tables; t1: Distribution of Glaciers in the TP and surroundings; t2: Data and method for analyzing glacial area reduction in each basin; t3: Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings; t4: Glacial length fluctuationin the TP and surroundings in the past three decades; t5: Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings; t6: Recent annual mass balances in different regions in the TP; t7: Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP. See attachments for data details: Supplementary information.pdf, Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf.

    View Details
  • The past frozen soil map of the Tibetan Plateau was based on a small number of temperature station observations and used a classification system based on continuity. This data set used the geographically weighted regression model (GWR) to synthesize MODIS surface temperature, leaf area index, snow cover ratio and multimodel soil moisture forecast products of the National Meteorological Information Center through spatiotemporal reconstruction. In addition, precipitation observations of more than 40 meteorological stations, the precipitation products of FY2 satellite observations and the multiyear average temperature observation data of 152 meteorological stations from 2000 to 2010 were integrated to simulate the average temperature data of the Tibetan Plateau, and the permafrost thermal condition classification system was used to classify permafrost into several types: Very cold, Cold, Cool, Warm, Very warm, and Likely thawing. The map shows that, after deducting lakes and glaciers, the total area of permafrost on the Tibetan Plateau is approximately 1,071,900 square kilometers. Verification shows that this map has higher accuracy. It can provide support for future planning and design of frozen soil projects and environmental management.

    View Details
  • The long-term sequence data set of lake areas on the Tibetan Plateau contains area data of 364 lakes with areas greater than 10 square kilometers from 1970s to 2013. Based on Landsat images, Landsat data in October are mainly used, and one data is taken every three years to reduce seasonal variation and make the available data reach the maximum. The data set is extracted by the NDWI Water Index, and each lake undergoes manual visual inspection and edition. The data set can be used to study lake change, lake water balance and climate change on the Tibetan Plateau. Data type: Vector data. Projection: WGS84.

    View Details
  • This dataset uses daily temperature data from SMMR (1978-1987), SSM/I (1987-2009) and SSMIS (2009-2015). It is generated by the dual-index (TB, 37v, SG) freeze-thaw discrimination algorithm. The classification results include the frozen surface, the thawed surface, the deserts and water bodies. The data coverage is the main part of China’s mainland, with a spatial resolution of 25.067525 km via the EASE-Grid projection method, and it is stored in ASCIIGRID format. All the ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the head file, the body content is numerically characterized by the freeze/thaw status of the surface soil: 1 for frozen, 2 for thawed, 3 for desert, and 4 for precipitation. If you want to use the icon for display, we recommend using the ArcView + 3D or Spatial Analyst extension module for reading; in the process of reading, a grid format file will be generated, and the displayed grid file is the graphical expression of the ASCII file. The read method comprises the following. [1] Add the 3D or Spatial Analyst extension module to the ArcView software and then create a new View. [2] Activate View, click File menu, and select the Import Data Source option. When the Import Data Source selection box pops up, select ASCII Raster in the Select import file type box. When the dialog box for selecting the source ASCII file automatically pops up, click to find any ASCII file in the data set, and then press OK. [3] Type the name of the Grid file in the Output Grid dialog box (it is recommended that a meaningful file name is used for later viewing) and click the path to store the Grid file, press OK again, and then press Yes (to select integer data) and Yes (to put the generated grid file into the current view). The generated files can be edited according to the Grid file standard. This completes the process of displaying an ASCII file into a Grid file. [4] In the batch processing, the ASCIGRID command of ARCINFO can be used to write AML files, and then use the Run command to complete the process in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}. The production of this data is supported by the following Natural Science Foundation Projects: Environmental and Ecological Science Data Center of West China (90502010), Land Data Assimilation System of West China (90202014) and Active and Passive Microwave Radiation Transmission Simulation and Radiation Scattering Characteristics of the Frozen Soil (41071226).

    View Details