This data comes from the National Catalogue Service for Geographic Information, which was provided to the public free of charge by the National Basic Geographic Information Center in November 2017. We spliced and trimmed Three Rivers Source Region as a whole to facilitate its use in the study of Three Rivers Source Region. The current status of the data is 2015. This dataset is 1:25 million traffic data in the Three Rivers Source Region area, including two layers of highway (LRDL) and railway (LRRL). Highways (LRDL) include national, provincial, county, rural, and other highways; railways (LRRL) include standard-gauge, narrow-gauge, subway, and light rail. Highway (LRDL) attribute item name and definition: Attribute item Description Sample GB National standard classification code 420301 RN Road number X828 NAME Road name Zhuoxiao fork-Baola Peak fork RTEG Road Level 4 TYPE Road type elevated Meaning of highway attribute items: Attribute item Code Description GB 420101 National road 420102 National road in building 420201 Provincial road 420102 Provincial highway in building 420301 County road 420302 County road in building 420400 Country road 420800 Machine tillage 440100 Simple road 440200 Village road 440300 Trail Railway (LRRL) attribute item name and definition: Attribute item Description Sample GB National standard classification code 410101 RN Railway number 0907 NAME Railway name Qinghai-Tibet Railway TYPE Rail type
0 2020-03-12
1. Data overview Based on the collected statistical yearbooks and survey data of counties and districts in Zhangye City in the middle reaches of Heihe River, the social and economic database in the middle reaches is constructed to reflect the basic situation of regional social economy. 2. Data content The database includes two data sets: (1) statistical yearbook data; (2) survey data of human factors in river basin. The statistical yearbook data mainly includes a number of relevant statistical data such as the gross product, financial revenue, construction of villages and towns, industrial output value, grain output, etc. of Zhangye City and its towns. The survey data of human factors in Heihe River Basin mainly include the survey data of social capital, cultural theory, happiness index and sustainable consumption in Heihe River Basin. 3. Time and space The statistical yearbook data is the statistical data of Ganzhou District, Linze County, Gaotai County, Sunan County, Shandan County, Minle county and towns under the jurisdiction of each county from 1990 to 2010. The survey data of human factors in the basin is the corresponding survey data of counties in the upper, middle and lower reaches in 2005.
0 2020-07-28
This data set contains the meteorological data of 45 regional stations in Zhangye area of Gansu Province from 2008 to 2009. There are two factors (air temperature and rainfall): Dongdashan forest farm and Anyang in Ganzhou district; Horseshoe temple in Sunan County; Longqu in Zhangye; Junma farm in Shandan; Mawei Lake in Gaotai; Banqiao in Linze. The observation of the three elements (wind direction, air temperature and rainfall) are: the Imperial City, the big river and recreation in Sunan County. The observation of the four elements (wind direction, wind speed, air temperature and rainfall) are: Tiancheng, Baba, luotuocheng, Xinba and Nanhua in Gaotai County; Pingchuan, Xinhua, nijiaying and yinggezui in Linze County; Jing'an, hongshawo forest farm, pingpingpingbao, Daman, alkali beach and shigangdun in Ganzhou district; Gushanzi, Longshoushan forest farm, Laojun, Liqiao, dongle, Junma first farm in Shandan County Liudun and junmachang in Qilian Mountain; Liuba, Sanbao, zhaizhaizhaizi, shuangshusi, haichaoba and dadonggan in Minle County; Xishui in Sunan County. The observation of the five factors (relative humidity, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The observation of the five factors (air pressure, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The six elements of observation (air pressure, humidity, wind direction, wind speed, air temperature and rainfall) are as follows: East top of dacha, dacha and crescent platform in Sunan County. The data recording unit shall comply with the ground meteorological observation specifications, and the data storage shall be expressed as an integer, as follows: ten times record of temperature expansion; ten times record of precipitation expansion; ten times record of wind speed expansion. The data format is ASCII text file.
0 2020-03-10
The dataset includes channel flow measured at the second irrigation stage in spring (22 May, 2012), the third irrigation stage in spring (18 June, 2012) and the first irrigation stage in autumn (16 July, 2012). The time used in this dataset is in UTC+8 Time. 1.1 Objective of measurement Objective of measuring channel flow are to provide the conference data for irrigation water optimal allocation model according to obtain reality water volume measured at Dou channel and Mao channel. Data set also is used to reference data for other observations such as eddy, biophysical parameters. 1.2 Observation measures and principle Measures: flow meter named Flowatch, which is made in Switzerland, observation precision: 0.1m/s; and rule, observation of which is 1cm. Principle: Flowatch, which is mechanical-based, is used to compute the velocity of the fluid according to vanes speed. The flow of channels is computed by using observed flow velocity and channel sectional area calculated on the basis of channel engineer sectional parameters and water level. 1.3 Observation location and items Observation spots include Yingyi branch San dou (Liu She, Shang’er She, and Xia’er She of Shiqiao village), Si Dou (Qi She, Ba She, and Jiu She of Shiqiao village), and Wu Dou (Yi She of Shiqiao village) at Yingke irrigation district, and seven Mao channels branched from five star branch channel Si Dou San Nong. Observation time is described as followed: Second stage irrigation in summer: 2012-5-22: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-5-23: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-5-24 to 2012-5-25: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-5-26 to 2012-5-28: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-5-28 to 2012-5-29: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-5-29 to 2012-5-30: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-5-30 to 2012-6-2: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-6-6: Yi Mao, Er Mao, San Mao, Si Mao, and Wu Mao branched from Five star branch channel Si Dou San Nong: Five star village 2012-6-7: Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Third stage irrigation in summer: 2012-6-18 to 2012-6-19: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-6-19 to 2012-6-20: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-6-20 to 2012-6-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-6-22 to 2012-6-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-6-24 to 2012-6-26: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-6-26 to 2012-6-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-6-27 to 2012-6-30: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-1 to 2012-7-2: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village First stage irrigation in Autumn: 2012-7-16 to 2012-7-18: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-7-18 to 2012-7-19: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-7-19 to 2012-7-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-7-21 to 2012-7-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-7-24 to 2012-7-25: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-7-25 to 2012-7-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-7-27 to 2012-7-31: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-27 to 2012-7-28: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Second stage irrigation in Autumn: 2012-8-8 to 2012-8-9: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-8-9 to 2012-8-10: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-8-10 to 2012-8-12: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-8-13 to 2012-8-15: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-8-15 to 2012-8-17: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-8-17 to 2012-8-19: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-8-19 to 2012-8-22: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-8-24 to 2012-8-25: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Observed items: average flow velocity of channel (m/s), water level of channel (m), water temperature (℃), engineer sectional parameters of channel (investigation). Average flow velocity and water level of channel are measured one time per hour when channel flow is stable. However, the two items are measured two times or more times when channel flow is unstable. 1.4 Data process Observed data is saved in excel sheet, types of which include channel flow velocity, channel sectional area, water level, and water temperature. Channel flow and irrigation water volume are calculated by using observed data according to data per-process approach.
0 2019-09-12
The survey data of vegetation quadrat in the middle reaches of Heihe River consists of the field survey data in 2013 and 2014, including the vegetation and soil data of the survey quadrat. The data of each survey sample includes the following information: sample longitude and latitude, sample size, elevation, sample overview, plant name, plant height, crown width, coverage, total coverage, number of trees, plant spacing, row spacing, large row spacing, DBH. The soil is divided into 6 layers according to 0-100cm below the ground, which are 0-10cm, 10-20cm, 20-40cm, 40-60cm, 60-80cm and 80-100cm respectively.
0 2020-07-30
The data set include crop height observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop height, a key biophysical parameter, was observed for evapotranspiration estimation in regional scale and the retrieval of other biophysical parameters as well as the application in eco-hydrological models. 2) Measurement instrument: Steel tape. 3) Measurement site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat height are measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site Maize height at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the super station Maize height at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site Maize height at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
0 2019-09-15
This dataset includes the observational data from 20 September, 2012, through 31 December, 2013, collected by the Cosmic-ray Soil Moisture Observation System (COSMOS), called crs, which waslocated at 100.372° E, 38.856° N and 1557 m above sea level,near the Daman Superstation in the Daman Irrigation District, Zhangye City, Gansu Province. The land cover in the footprint was a maize crop. The bottom of the probe was 0.5 m above the ground, and the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), the sample time of fast neutrons (N1ET, s), and the sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were deleted and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity exceeded 80% inside the probe box, (c) the samping durationwere less than 59 minutes or greater than 61 minutes and (d) the neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation containedin the equipment manual. 3) Calibration After the quality control and corrections were applied, the soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture recordedby SoilNET within the footprint. 4) Soil moisture computation Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation specified in the equipment manual. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Zhu et al. (2015) (for data processing) in the Citation section.
0 2020-04-10
The data are soil moisture data of tianlaochi watershed in Qilian Mountain. The TDR probes of soil moisture in the whole watershed were buried on July, 19-august 23, 2013. The positions of these probes can represent the whole tianlaochi watershed. The four altitudes of Picea forest slope, shrub slope, Sabina forest slope and steppe were mainly sampled. The first observation will be carried out on July 19, with an interval of one week. If there is rainfall time, the observation will be carried out on the next day. At the last time of observation, soil samples were taken from all sampling points, and soil mass moisture content was measured in the laboratory, aiming to correct the data observed by TDR probe.
0 2020-03-11
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The scale of Zhangye irrigation canal system map in Heihe River Basin is 1:2500000, the normal axis is equal to the conic projection, and the standard latitude is 2547 n. Data sources: Zhangye irrigation canal system data of Heihe River Basin, administrative boundary data of one million Heihe River Basin in 2008, and Heihe River Basin in 2009. The channels of Heihe River Basin are mainly distributed in Zhangye, which are divided into five levels: dry, branch, Dou, Nong and Mao.
0 2020-03-05
This data set contains the eddy correlativity observation data from January 1, 2017 to December 31, 2017 at the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which the calibration data of the vortex system Li7500A from April 13 to April 14 is missing;When 10Hz data is missing due to a problem with the storage card (2.17-2.23, 3.3-4.12), the data will be replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
0 2020-04-10
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn