The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 17, 2007 during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.
0 2019-05-23
This data set contains meteorological element observation data from January 1, 2016 to December 31, 2016 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Some invalid values of 4cm soil moisture appeared in November and December.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).
0 2020-03-04
This dataset includes the emissivity spectrum (8-14 µm) of typical ground objects in Zhangye City, Zhangye airport, desert and farmland at Wuxing experiment area. The data was measured by the BOMEM MR304 FTIR (Fourier Transform Infrared Spectrometer). A. Objective The objective of the thermal infrared (TIR) spectrum measurement lies in: Radiometric calibration for the airborne TIR sensor, land surface emissivity products validation and collecting typical surface spectrum working as priori knowledge in land surface temperature inversion and ecological and hydrological models. B. Instruments and theory Instruments: BOMEM MR304 FTIR, Mikron M340 blackbody, BODACH BDB blackbody, diffused golden plate, Fluke 50-series II thermometer Measurement theory: The target radiance is directly measured by the MR304 FTIR under clear-sky condition while the atmospheric downward radiance is obtained through a diffused golden plate, and emissivity is retrieved by the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm C. Experiment site and targets 29-5-2012: Stone bricks, grassland and asphalt, etc at square of Zhangye. 20-6-2012: Roof of the building in Zhangye, water and sand sample collected from the desert, etc. 30-6-2012: Cement road at Zhangye airport, desert around the Zhangye airport. 3-7-2012: Corn leaves, soil and road in the farmland at Wuxing village, Zhangye City. 4-7-2012: Corn leaves, wheat canopy at Xiaoman town, Zhangye City. 10-7-2012: Bricks of Runquanhu park, Zhangye City. 13-7-2012: Corn leaves and other plants at Wuxing village, Zhangye City. D. Data processing The original data collected by BOMEM FTIR is firstly calibrated using the calibration data and get the radiance spectrum of the targets and sky (*.rad), then, the radiance data is converted to the easy readably text file (ASCII format). The time used in this dataset is in UTC+8 Time.
0 2019-09-12
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 11, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08), No.2 quadrate (H09-H16), No.3 quadrate (H17-H24), No.4 quadrate (H25-H32), No.5 quadrate (H33-H40), No.6 quadrat (H41-H48), No.7 quadrate (H49-H56) and No.8 quadrat (H57-H64). Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
0 2019-05-23
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huangcaogou station between 7 June, 2013, and 31 December, 2013. The site (100.731° E, 38.003° N) was located on a cold grassland surface in the Huangcaogou village, E’bao town, Qilian County, Qinghai Province. The elevation is 3137 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (ECh2o-5; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data of wind direction were missing during 12 June, 2013 and 24 September, 2013. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-14
1、 Data description The data include the rainfall in Qilian station of the upper reaches of Heihe River from May 2012 to June 2013 and the content of silica in the soil water of hulugou small watershed. 2、 Sampling location The sampling point of rainfall is located in the Institute of eco hydrological experiment and research, Institute of cold and drought, Chinese Academy of Sciences, hulugou small watershed, with the longitude and latitude of 99 ° 53 ′ 06.66 ″ E and 38 ° 16 ′ 18.35 ″ n. Soil water sampling point is about 300m above No.2 meteorological station of Chinese Academy of Sciences. The longitude and latitude of the sampling point are 99 ° 53 ′ 31.333 ″ e, 38 ° 13 ′ 50.637 ″ n. 3、 Test method The sample test method is to use hash DR2800 ultraviolet spectrophotometer to test the rainwater obtained from the rain gauge and the soil water collected from the sampling point.
0 2020-03-11
The data is 100,000 desert distribution map over the north_slope_of_Tianshan River Basin. This data uses 2000 TM image as data source to interpret, extract and revise. Remote sensing and geographic information system technology are combined with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code) and ashm_id (desert code), of which the desert code is as follows: mobile sand 2341010, semi-mobile sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000 and saline-alkali land 2343000.
0 2020-06-01
The data is digitized from a drawing, the map of developmental degree of desertification in Daqinggou, Keerqin (HORQIN) Steppe (1975). The specific information of this map is as follows: * Chief Editor: Zhu Zhenda * Editor: Feng Yusun * Drawer: Feng Yusun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Mapping unit: Prepared by Desert Research Office, Chinese Academy of Sciences * Publisher: No * Scale: 1: 50000 * Publication time: No * Legend: Gully Dense Forest, Sparse Woods, Brush, Artificial Woodland, Nursery and Vegetable Garden, Grass Land, Dry Farmland (Dry Farmland), Rejected Farmland, Marsh Land, Shifting Snad-Dunes, Semi-Shifting Sand-Dunes, Semi-Fixed Sand-Dunes ), Fixed Sand-Dunes, Water Area, Rice, Residential, Highway 1. File format and naming The data is stored in ESRI Shapefile format, including the following layers: Desertification map of Daqinggou area in Horqin steppe, rivers, swamps, roads, lakes, residential areas 2. Data desertification attribute fields: Type of desertification (Shape), Grassland (Grassland), Woodland (Woodland), Woodland Density (W_density), Farmland (Farmland) 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
0 2020-06-11
The High Asia region is an area sensitive to global changes in mid-latitude regions and is a hotspot for research. The lakes in the territory are scattered, and the lake freeze-thaw process is one of the key factors sensitive to global change. Due to the large difference in the dielectric constant between ice and water, satellite-borne passive microwave remote sensing is weather insensitive and has a high revisiting rate; thus, it can achieve rapid monitoring of the freeze-thaw state of lakes. According to the area ratio of the lake and the land surface in the sub-pixels of passive microwave radiometer data, this data set represents the lake brightness temperature information of the pixel (sub-pixel level) by applying the hybrid pixel decomposition method in order to monitor the lake freeze-thaw process in the High Asia region. Thus, by adopting a variety of passive microwave data, time series of lake brightness temperature and freeze-thaw status were obtained for a total of 51 medium to large lakes from 2002 to 2016 in the High Asia region. Using cloudless MODIS optical products as validation data, three lakes of different sizes in different regions of High Asia, i.e., Hoh Xil Lake, Dagze Co Lake, and Kusai Lake, were selected for freeze-thaw detection validation. The results indicated that the lake freeze-thaw parameters obtained by microwave and optical remote sensing were highly consistent, and the correlation coefficients reached 0.968 and 0.987. This data set contained the time series brightness temperature of lakes and the freeze-thaw parameters of lake ice, which could be used to further invert the characteristic parameters of lakes and enhance the understanding of lake ice freezing and thawing in the High Asia region. This database will be useful in the assessment of climatic and environmental changes in the High Asia region and in global climatic change response models. The data set consists of two parts: the passive microwave remote sensing brightness temperature data set of 51 lakes in the High Asia region from 2002 to 2016, with an observation interval of 1 to 2 days, and the lake ice freeze-thaw data set obtained by estimation of the lake brightness temperature. The files are the lake brightness temperature data via the nearest neighbour method and pixel decomposition in the form of a .zip file (12 MB) and the lake freeze-thaw data set for 51 lakes in the High Asia region from 2002 to 2016 in the form of an .xls file (0.1 MB).
0 2019-09-15
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from October 24 to December 31, 2018. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
0 2019-09-15
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn