The data is the road distribution dataset of the river basins at the north slope of the Tianshan Mountains, with a scale of 250000 and a projection of latitude and longitude, including the spatial distribution and attribute data of the main roads in the river basins at the northern foot of the Tianshan Mountains, with attribute fields of code (road code) and Name (road classification).
0 2020-04-06
This dataset contains the flux measurements from the cropland eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 14 July to 11 December, 2013. The site (101.134° E, 42.005° N) was located in the muskmelon surface, Ejin Banner in Inner Mongolia. The elevation is 875 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the CF card storage problem and calibration of CO2/H2O gas analyzer, data during 29 July to 19 August and 11 December to 31 December were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-15
In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated water capacity, soil organic matter, total nitrogen and inorganic carbon content were studied. PH value, electrical conductivity, total carbon, SiC and C / N were monitored to determine the physical and chemical properties of 0-20cm topsoil and the soil particle size composition of 0-20cm and 20-80cm soil layers. According to the soil properties of five different soil in cotton field, cotton irrigation experiment was carried out: irrigation amount, seed cotton yield, straw parameters, lint percentage, coat index, seed index, single boll weight, flower rate before frost, unit boll number, single boll weight, irrigation water productivity, etc.
0 2020-07-30
In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated capacity, soil organic matter, total nitrogen and inorganic carbon content of 118 plots were studied. PH value, conductivity, total carbon, SiC, C / N were monitored to determine the physical and chemical properties of 0-20cm arable soil, and the soil particle composition of 0-20cm and 20-80cm soil layers.
0 2020-02-22
Third Pole 1:100,000 airport and runway data set include:airport(Tibet_Airport)and(Tibet_Airport_runways) vector space data set and its attribute name:Airport name(Name)、Name of airport(CNTRY_NAME)、Airport country abbreviation(CNTRY_CODE)、latitude(LATITUDE)、longitude(LONGITUDE). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface
0 2019-09-12
The source data of this data set comes from the 1:1 million soil map of China (Shi et al., 2004) and 8595 soil sections in the second Soil Census. The polygonal connection method is used to connect the soil profile with the soil map to obtain the soil sand, silt and clay content map. The distance between the profile and the map spot, the number of soil profiles and the information of soil classification are taken into account. Please refer to related papers and web pages for specific instructions. Data characteristics Projection: GCS_Krasovsky_1940 Coverage: Heihe River Basin Resolution: 0.00833 degrees (about one kilometer) Data format: FLT, tiff Value range: 0% - 100% Document description Floating point grid files include: Sand1.flt, clay1.flt - content of sand and clay in the surface layer (0-30cm). Sand2.flt, clay2.flt - sand and clay content in the bottom layer (30-100cm). Psd.hdr – header file: Ncols - number of columns Nrows - number of rows Xllcorner - lower left latitude Yllcorner - lower left longitude Cellsize - cell size NoData_Value – null byteorder - LSBFIRST, Least Significant Bit First TIFF grid files include: Sand 1.tif, clay 1.tif - the content of sand and clay in the surface layer (0-30cm). Sand 2.tif, clay 2.tif - sand and clay content in the bottom layer (30-100cm). For data details, please refer to: http://globalchange.bnu.edu.cn/research/soil
0 2020-06-05
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The vegetation type map of Heihe River Basin is one of the land surface part of the atlas, with scale of 1:2500000, positive axis equal conic projection and standard latitude of 25 47 n. Data sources: 1:1 million vegetation type map of Heihe River Basin, road data of Heihe River Basin in 2010, administrative boundary data of Heihe River Basin in 2008, residential area data of Heihe River Basin in 2009, and 100000 river data of 2009.
0 2020-03-05
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in C1, W2 and B2 of the Biandukou foci experimental area on Mar. 14, 2008, from 23:30 on 14 to 1:00 on 15, to be specific. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:21 BJT. The wheat stubble land, the deep plowed land and the rape stubble land were chosen for measurements. (1) The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the land cover type was also recorded. The data can be opened by Microsoft Office. (2) The gravimetric soil moisture (samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) was measured by the microwave drying method. (3) The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Four data files were included, ASAR data, C1, W2 and B2 data.
0 2019-09-12
This data set contains the observation data of eddy correlativity of farmland stations downstream of heihe hydrometeorological observation network from January 23, 2014 to December 31, 2014.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is melon.The longitude and latitude of the observation point are 101.1338e, 42.0048n and 875m above sea level.The rack height of the vortex correlator is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (EC150 before April 15 and Li7500A after June 10) is 0cm (before April 15) /15cm (after June 10). The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.April 16 solstice June 9 due to the adjustment of the observation tower, data was missing during the period. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
0 2020-03-05
Data of field hydrogeological double-ring seepage test in 2012 in mamane mountain area, gansu province.The method adopted is the double ring method.Specific test process: fixed head water injection, observation record.According to the ring bottom ruler, keep the fixed head of water injection.Meanwhile, the injected water was observed according to the ruler on the injection plastic bucket, and the recorded time intervals were 5 minutes, 10 minutes, 20 minutes and 30 minutes respectively.Stable water seepage, that is, the completion of the experiment.The relevant permeability parameters are obtained according to darcy's law.
0 2020-03-10
The dataset contains all individual glacial storage (unit: km3) over the Qinghai-Tibetan Plateau in 1970s and 2000s. It is sourced from the resultant data of the paper entitled "Consolidating the Randolph Glacier Inventory and the Glacier Inventory of China over the Qinghai-Tibetan Plateau and Investigating Glacier Changes Since the mid-20th Century". The first draft of this paper has been completed and is planned to be submitted to Earth System Science Data journal. The baseline glacier inventories in 1970s and 2000s are the Randolph Glacier Inventory 4.0 dataset, and the Glacier Inventory of China, respectively. Based on the individual glacial boundaries extracted from the above-mentioned two datasets, the grid-based bedrock elevation dataset (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m), and the glacier surface elevation obtained by a slope-dependent method, the individual glacier volumes in 1970s and 2000s are then calculated. In addition, the calculated results of individual glacier volumes in this study have been compared and verified with the existent results of several glacier volumes, relevant remote sensing datasets, and the global glacier thickness dataset based on the average of multiple glacier model outputs (https://www.research-collection.ethz.ch/handle/20.500.11850/315707, doi:10.3929/ethz-b-000315707), and the errors in the calculations have also been quantified. The established dataset in this study is expected to provide the data basis for the future regional water resources estimation and glacier ablation-involved researches. Moreover, the acquisition of the data also provides a new idea for the future glacier storage estimation.
0 2020-06-11
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn