The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 3 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 11:40 am (UTC+8) from Zhangye airport and landed at 14:10 pm, with the flight time of 2.5 hours. The flight was performed in the altitude of about 350 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 100 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
0 2019-05-23
The dataset of eddy covariance observations was obtained at the Yingke Oasis station from 27 Dec. 2007 to 31 Dec. 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30cm and the sampling frequency was 10HZ/s. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data files were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
0 2019-05-23
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Envisat ASAR was obtained in the Linze station foci experimental area on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:26 BJT. The simultaneous ground data included the following items: (1) soil moisture (0-5cm) measured once by the cutting ring method at the corner points of the 40 subplots of the west-east desert transit zone strip , once by the cutting ring method in the nine subplots of the north-south desert transit zone, nine times in the LY06 and LY07 strips quadrates,and once by the cutting ring and once by ML2X Soil Moisture Tachometer in the Wulidun farmland. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature measured by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips (49 points and repeated three times), and Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU and the reference board (40% before Jun. 15 and 20% hereafter) in Wulidun farmland. Raw spectral data were binary files , which were recorded daily in detail, and pre-processed data on reflectance (by ViewSpecPro) were archived as Excel files. (4) maize BRDF measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (5) LAI measured in the maize quadrate, poplar quadrate and desert scrub quadrate in Wulidun farmland, the desert transit zone strips and the poplar forest quadrate by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (6) LAI of maize measured by LAI2000 in Linze station quadrates and Wulidun farmland quadrates. Data educed from LAI2000 periodically were archived as text files (.txt) and marked with one ID. Raw data (table of word and txt) and processed data (Excel) were included. Besides, observation time, the observation method and the repetition were all archived. (7) LAI measured by the ruler and the set square in B2 and B3 of Linze station quadrates. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
0 2019-09-12
The modern sporopollen identification results of five different geomorphic types in the middle reaches of Heihe River show that there are 39 sporopollen types, 22 main types, belonging to 6 different vegetation types in 45 topsoil samples distributed in the desert vegetation belt. The SPOROPOLLEN ASSEMBLAGES with high percentage of sporopollen in the sporopollen map were selected to represent different geomorphic types. It was found that five geomorphic types (dune, alluvial proluvial fan, flood plain, riverbed and wetland) could be expressed by different combinations of nine sporopollen.
0 2020-07-30
The dataset is the vector map of the administrative boundary of the Tarim River Basin, with a scale of 250,000 and projection: latitude and longitude. The data includes spatial data and attribute data, mainly the name and administrative code of the county boundary of the Tarim River Basin.
0 2020-06-04
This data includes three parts of data, namely shrub water holding experiment, shrub interception experiment and shrub transpiration experiment data. Shrub water holding experiment: select the two shrub types of Caragana jubata and Potentilla fruticosa, respectively pick the branches and leaves of the two vegetation types, weigh their fresh weight, carry out water holding experiment, measure the saturated weight of branches and leaves, dry weight of branches and leaves, dry weight of branches and leaves after completion, and finally obtain the data of branches, leaves and total water holding capacity. Shrub interception experiment: two shrubs, Caragana jubata and Potentilla fruticosa, were also selected and investigated. 30 rain-bearing cups were respectively arranged under the two shrubs. after each rainfall, penetration rainfall was measured and observed from June 1, 2012 to September 10, 2012. Shrub Transpiration Experiment: Potentilla fruticosa on July 14, Caragana jubata on August 5, Salix gilashanica on August 15, 2012. The measurement is made every hour according to the daily weather conditions.
0 2020-07-30
This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.
0 2020-06-09
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao mixed forest station between 12 July, 2013, and 31 December, 2013. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 28 m, north), wind speed and direction profile (034B; 28 m, north), air pressure (AV-410BP; in tamper box), rain gauge (52203; 28 m, south), four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (IRTC3; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m), and soil moisture profile (ML2X; install on Dec. 7, 2013, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-15
The data set includes observation data of meteorological elements in the downstream desert station of Heihe Hydrometeorological Observation Network from January 1, 2017 to December 31, 2017. The site is located in the desert beach of Ejin Banner, Inner Mongolia, and the underlying surface is red sand desert. The latitude and longitude of the observation point is 100.9872E, 42.1135N, and the altitude is 1054m.The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 17, 2017 to September 23, due to the re-enhancement of the observation tower, the data is missing (the four-component radiation missing period is from September 9 to September 23); (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
0 2019-09-15
Dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jun. 4, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image linage ! endtime ! lat ! long ! alt |- | 1 || 3-15 || 2008-06-04_10-09-09_DATA.BSQ || 10:09:16 || 38.964 || 100.512 || 3315.0 || 6764 || 10:16:47 || 38.713 || 100.351 || 3351.0 |- | 2 || 3-14 || 2008-06-04_10-20-29_DATA.BSQ || 10:21:20 || 38.713 || 100.344 || 3319.1 || 6865 || 10:28:57 || 38.961 || 100.504 || 3311.7 |- | 3 || 3-13 || 2008-06-04_10-33-05_DATA.BSQ || 10:34:27 || 38.974 || 100.505 || 3340.1 || 6934 || 10:42:09 || 38.718 || 100.341 || 3370.7 |- | 4 || 3-12 || 2008-06-04_10-45-51_DATA.BSQ || 10:47:00 || 38.711 || 100.30 || 3331.2 || 6999 || 10:54:47 || 38.966 || 100.494 || 3315.8 |- | 5 || 3-11 || 2008-06-04_10-58-29_DATA.BSQ || 11:00:26 || 38.978 || 100.495 || 3332.3 || 6914 || 11:08:07 || 38.723 || 100.331 || 3356.2 |- | 6 || 3-10 || 2008-06-04_11-11-48_DATA.BSQ || 11:12:43 || 38.716 || 100.320 || 3326.8 || 6969 || 11:20:28 || 38.970 || 100.484 || 3318.1 |- | 7 || 3-9 || 2008-06-04_11-24-09_DATA.BSQ || 11:25:54 || 38.978 || 100.483 || 3337.7 || 6755 || 11:33:25 || 38.727 || 100.321 || 3339.4 |- | 8 || 3-8 || 2008-06-04_11-37-06_DATA.BSQ || 11:38:31 || 38.721 || 100.310 || 3327.3 || 6930 || 11:46:13 || 38.976 || 100.474 || 3326.6 |- | 9 || 3-7 || 2008-06-04_11-49-54_DATA.BSQ || 11:51:37 || 38.984 || 100.473 || 3333.0 || 6730 || 11:59:05 || 38.732 || 100.311 || 3351.4 |- | 10 || 3-6 || 2008-06-04_12-02-47_DATA.BSQ || 12:03:48 || 38.725 || 100.300 || -1.0 || 6790 || 12:11:21 || 38.978 || 100.462 || 3325.8 |- | 11 || 3-5 || 2008-06-04_12-15-02_DATA.BSQ || 12:16:41 || 38.991 || 100.465 || 3357.9 || 6893 || 12:24:21 || 38.734 || 100.300 || 3386.0 |- | 12 || 3-4 || 2008-06-04_12-28-02_DATA.BSQ || 12:28:52 || 38.729 || 100.290 || 3331.3 || 6820 || 12:36:27 || 38.983 || 100.453 || 3327.5 |- | 13 || 3-3 || 2008-06-04_12-40-09_DATA.BSQ || 12:41:59 || 38.994 || 100.454 || 3347.3 || 6934 || 12:49:41 || 38.741 || 100.291 || 3360.4 |- | 14 || 3-2 || 2008-06-04_12-53-23_DATA.BSQ || 12:54:31 || 38.734 || 100.280 || 3328.1 || 7110 || 13:02:25 || 38.990 || 100.445 || 3338.6 |- | 15 || 3-1 || 2008-06-04_13-06-07_DATA.BSQ || 13:07:35 || 39.000 || 100.444 || 3325.9 || 6979 || 13:15:20 || 38.746 || 100.281 || 3334.4 |}
0 2019-05-23
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn