• 黑河流域1公里分辨率月尺度地表蒸散发第二版数据集 (2000-2013)

    ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

    0 2020-08-26

  • 青藏高原土壤细菌多样性调查(V1.0)(2015)

    The data set of bacterial diversity in Tibetan soil provides the microbial distribution characteristics of the soil surface (0-2 cm) of the Tibetan Plateau. The samples were collected from July 1st to July 15th, 2015, from three types of ecosystems: meadows, grasslands and desert. The soil samples were stored in ice packs and transported to the Ecological Laboratory of the Institute of Tibetan Plateau Research in Beijing. The DNA from the soil was extracted using an MO BIO Power Soil DNA kit. The soil surface samples were stored in liquid nitrogen after collection, shipped to the Sydney laboratory, and then extracted using a Fast Prep DNA kit. The extracted DNA samples adopted 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3') to amplify the 16S rRNA gene fragments. The amplified fragments were sequenced by the Illumina Miseq PE250 method, and the raw data were analyzed using Mothur software. The sequences with poor sequencing quality were first removed; the sequences were sorted, and the chimeric sequences were removed. The similarities between the sequences were then calculated, the sequences with similarities above 97% were clustered into one OTU, and the OTU representative sequence was defined. The OTU representative sequence was compared with the Silva database and identified as level one when the reliability exceeded 80%. The microbial diversities in these data on the Tibetan Plateau were systematically compared, which made them significant to the study of the microbial distribution on the Tibetan Plateau.

    0 2020-04-29

  • 黑河流域Landsat ETM+遥感影像数据集(1999-2008)

    In April 1999, Landsat 7 was launched. As a supplement and enhancement to the Landsat series, the sensor it carried was ETM+. The parameters of each band were close to those of Landsat 5, but the resolution of panchromatic band with a resolution of 15m was added, and the resolution of thermal infrared band was improved to 60m. At present, there are 85 ETM + data scenes in heihe river basin.Data acquisition time is 1999-07-07, 1999-09-23 (2 scenes), 1999-10-18, 1999-11-26, 2000-01-20, 2000-04-20, 2000-05-06 (2 scenes), 2000-05-20, 2000-06-14 (2 scenes), 2000-07-07 (2 scenes), 2000-07-08, 2000-08-10, 2000-10-02, 2000-10-11,2000-10-13, 2001-05-25, 2001-07-03, 2001-08-20 (2 king), 2001-10-23, 2002-05-03, 2002-05-28, 2002-06-13, 2002-06-29, 2002-07-24, 2004-12-11, 2005-07-23, 2005-09-09, 2005-10-09, 2006-05-07,2006-05-21, 2006-06-24, 2006-07-26, 2006-08-25, 2006-12-01, 2007-08-12, 2008-01-05, 2008-02-06, 2008-03-25, 2008-05-10, 2008-05-19, 2008-05-28, 2008-06-04, 2008-07-15 (2 scenes), 2008-07-22, 2008-08-16 (4 scenes),2008-08-30, 2008-09-08, 2008-09-15, 2008-09-17, 2008-10-01, 2008-10-10 (2 scenes), 2008-10-19 (3 scenes), 2008-10-26 (3 scenes), 2008-11-02, 2008-11-04 (4 scenes), 2008-11-18, 2008-11-20 (4 scenes), 2008-11-27 (3 scenes), 2008-12-04, 2008-12-062008-12-13 (3 scenes).

    0 2020-06-05

  • 祁连山寺大隆林区天老池流域样地小型蒸渗仪蒸散发数据集(2012年6月-9月)

    This data comes from the Tianlaochi watershed sample plot. The vegetation types of the sample plot are grassland, shrub, Sabina przewalskii and Picea crassifolia. The self-made Lysimeter is mainly used to observe the soil evapotranspiration characteristics in Picea crassifolia forestry. To provide basic data for the development of watershed evapotranspiration model. At about 19:00 every day, an electronic scale with an accuracy of 1g is used to weigh the inner barrel. In case of rain, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage amount in the leakage barrel as well. The observation period in 2011 is from May 30 to September 10. The observation period in 2012 is from June 11 to September 10. Observation instrument: 1) standard 20cm diameter rain tube rain gauge. 2) self-made lysimeter (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy: 0.1g) used to observe the weight change of self-made lysimeter.

    0 2020-03-12

  • 黑河生态水文遥感试验:水文气象观测网数据集(混合林站自动气象站-2017)

    The data set contains meteorological element observation data from January 1, 2017 to December 31, 2017 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm, Ts_160cm, Ts_200cm, Ts_240cm) (in:C), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm, Ms_160cm, Ms_200cm, Ms_240cm) (unit: volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (unit: micromole/sq.s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the data of wind speed and infrared temperature between May 26 and July 9, 2017 were missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-03-04

  • 葫芦沟流域地下水位数据集(2011)

    1. Data overview: This data set is the daily scale groundwater level data of Qilian station from November 1, 2011 to December 31, 2011. In October 2011, two groundwater monitoring wells were arranged in hulugou small watershed. Well 1 is located beside the general control hydrological section of hulugou watershed, with a depth of 12.8m and an aperture of 12cm. Well 2 is located in the east of the Delta, about 100m away from the river, with a depth of 14.7m and an aperture of 12cm. 2. Data content: U20hobo water level sensor is arranged in the groundwater well, which is mainly used to monitor the change of groundwater level and temperature in hulugou small watershed. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. 3. Space time scope: Geographic coordinates of well 1: longitude: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2974m (near the hydrological section at the outlet of the basin). Geographic coordinates of well 2: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3204.1m (east side of the East Branch of the delta).

    0 2020-12-23

  • 祁连山综合观测网:黑河流域地表过程综合观测网(荒漠站涡动相关仪-2018)

    This dataset contains the flux measurements from the desert station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.9872° E, 42.1135° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 1054 m. The EC was installed at a height of 4.7 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during May 14 to June 26, 2018 were missing due to the data logger malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    0 2020-07-25

  • 葫芦沟小流域降雨、河水和土壤水的稳定氢氧同位素值(2012年6月~2013年6月)

    1、 Data Description: from June 2012 to June 2013, the rainfall, river water and soil water in the basin were sampled and analyzed. 2、 Sampling location: rainfall sampling point is located in Qilian station of Chinese Academy of Sciences, with longitude and latitude of 99 ° 52 ′ 39.4 ″ e, 38 ° 15 ′ 47 ″ n; river water sampling point is located at the outlet of hulugou watershed, with longitude and latitude of 99 ° 52 ′ 47.7 ″ e, 38 ° 16 ′ 11 ″ n, with sampling frequency of once a week; soil water sampling point is located in the middle and lower part of hongnigou catchment, with sampling depth of 180cm underground and longitude and latitude of 99 ° 52 ′ 25.98 ″ E, 38 ° 15 ′ 36.11 ″ n, only one sample is taken. 3、 Test method: thermofisher TM flash 2000 and mat 253 gas stable isotope ratio mass spectrometer were used to measure the samples in 2012; l2130-i ultra-high precision liquid water and water vapor isotope analyzer was used to measure the samples in 2013.

    0 2020-03-12

  • 塔里木河流域1:25万道路分布数据集(2000)

    Tarim River is the largest inland river in China, with a total length of 2179 kilometers. Tarim River Basin is one of the vulnerable areas of ecological environment in China. Due to the lack of coordination in material and energy matching, different regions show different vulnerability characteristics in macro. According to the relevant principles of ecological environment quality evaluation, combined with the ecological environment management of the Tarim River Basin. Data is road distribution data set of Tarim River Basin, scale: 250000, projection: longitude and latitude, mainly including spatial distribution and attribute data of main roads in Heihe River Basin, attribute fields: Code (road code), name (road classification) Collect and sort out the basic, meteorological, topographical and geomorphological data of the Tarim River Basin, and provide data support for the management of the Tarim River Basin.

    0 2020-03-30

  • 黑河生态水文遥感试验:黑河流域中游植被类型和种植结构调查观测数据集(2012年6月-8月)

    The dataset contains vegetation type and plant structure in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI and SASI the middle reaches of the Heihe River Basin between 25 June and 6 August in 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Vegetation range in the middle reaches of the Heihe River Basin and survey route could be decided with the help of Google Earth. Wuxing village in Xiaoman town was selected to survey detailed and other places were investigated as far to reach as possible. Main methods were to write down the longitude and latitude, phenology of the plant structure, take photos for the vegetation. Dataset contains: longitude and latitude, vegetation type, area and phenology. Observation Place: CASI flight area in artificial oasis in the middle reaches, CASI stripe flight area in the middle reaches and Zhangye district. Date: From 25 June and 6 August in 2012.

    0 2019-09-14