This glacial lake inventory is jointly supported by the International Centre for Integrated Mountain Development (ICIMOD) and United Nationenvironment Programme / Regional Resourc Centre, Asia and The Pacific (UNEP / RRC-AP). 1. The glacial lake inventory refers to remote sensing data such as Landsat 4/5 (MSS, TM1982 / 1985/1984/1999), Landsat 7 (ETM +), IRS-1C, LISS-III (1995IRS-1C), (1997 IRS-1D), etc. It reflects the current status of glacial lakes in the region in 2000. 2. Glacial lake inventory coverage: India-Uttaranchal. 3. The content of the glacial lakeinventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameters: Projection: Universal Transverse Mercator (UTM) Ellipsoid: WGS84 Datum: WGS84 Ellipsoid Parameters: a = 6378137.000 1 / f = 298.257223563 Northem Hemisphere: Yes MinimumX: 221473.969 MinimumY: 3300590.500 MaximumX: 513943.969 MaximumY: 3488960.500 Zone: 44 For detailed data description, please refer to data files and reports.
0 2020-04-16
This dataset contains the flux measurements from site No.7 eddy covariance system (EC) in the flux observation matrix from 29 May to 18 September, 2012. The site (100.36521° E, 38.87676° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.39 m. The EC was installed at a height of 3.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
0 2020-06-29
On 19 August 2012, a RCD30 camera of Leica Company boarded on the Y-12 aircraft was used to obtain the CCD image. RCD30 camera has a focal length of 80 mm and four bands including red, green, blue and near-infrared bands. The absolute flight altitude is 2900 m and ground sample distance is 10 cm. The data includes TIF images and exterior orientation elements.
0 2019-05-23
Surface evapotranspiration (ET) is an important variable that connects the land energy balance, water cycle and carbon cycle. The accurate acquisition of ET is helpful to the research of global climate change, crop yield estimation, drought monitoring, and it is of great significance to regional and global water resource planning and management. The methods of obtaining evapotranspiration mainly include ground observation, remote sensing estimation, model simulation and assimilation. The high-precision surface evapotranspiration data can be obtained by ground observation, but the spatial representation of observation stations is very limited; remote sensing estimation, model simulation and assimilation methods can obtain the spatial continuous surface evapotranspiration, but there are problems in the verification of accuracy and the rationality of spatial-temporal distribution pattern. Therefore, this study makes full use of a large number of high-precision station observation data, combined with multi-source remote sensing information, to expand the observation scale of ground stations to the region, to obtain high-precision, spatiotemporal distribution of continuous surface evapotranspiration. Based on the "Heihe River Integrated Remote Sensing joint experiment" (water), "Heihe River Basin Ecological hydrological process integrated remote sensing observation joint experiment" (hiwater), the accumulated station observation data (automatic meteorological station, eddy correlator, large aperture scintillation instrument, etc.), 36 stations (65 station years, distribution map is shown in Figure 1) are selected in combination with multi-source remote sensing data (land cover) Five machine learning methods (regression tree, random forest, artificial neural network, support vector machine, depth belief network) were used to construct different scale expansion models of surface evapotranspiration, and the results showed that: compared with The other four methods, random forest method, are more suitable for the study of the scale expansion of surface evapotranspiration from station to region in Heihe River Basin. Based on the selected random forest scale expansion model, taking remote sensing and air driven data as input, the surface evapotranspiration time-space distribution map (etmap) of Heihe River Basin during the growth season (May to September) from 2012 to 2016 was produced. The results show that the overall accuracy of etmap is good. The RMSE (MAPE) of upstream (las1), midstream (las2-las5) and downstream (las6-las8) are 0.65 mm / day (18.86%), 0.99 mm / day (19.13%) and 0.91 mm / day (22.82%), respectively. In a word, etmap is a high-precision evapotranspiration product in Heihe River Basin, which is based on the observation data of stations and the scale expansion of random forest algorithm. Please refer to Xu et al. (2018) for all station information and scale expansion methods, and Liu et al. (2018) for observation data processing.
0 2020-04-07
On 2 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes an CCD cameras with spatial resolution 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with spatial resolution 6.3 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
0 2019-09-12
The dataset of automatic meteorological observations was obtained at the Linze grassland station (E100 °04'/N39°15', 1394m) from Oct. 1, 2007 to Oct. 27, 2008. The landscape is dominated by wetland and saline land. Observation items were multilayer (2m, 4m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation, the surface temperature, the soil temperature (5cm, 10cm, 20cm and 40cm), and the multilayer soil temperature (2cm, 5cm and 10cm). The dataset was released at different levels: Level1 were transformed raw data and stored in .csv month by month; Level2 were processed data after correction and quality control. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
0 2019-05-23
This data set includes 26 bnunet nodes in the 0.5 °× 0.5 ° observation matrix around Zhangye City in the middle reaches of Heihe River from September 2013 to March 2014. The configuration of 26 nodes is the same, including 3 layers of soil temperature probe with depth of 1cm, 5cm and 10cm and 1 layer of soil moisture probe with depth of 5cm. The observation frequency is 2 hours. This data set can provide spatiotemporal continuous observation data set for remote sensing authenticity test of surface heterogeneity and ecological hydrology research. The time is UTC + 8. Please refer to "bnunet data document. Docx" for details
0 2020-03-14
The data is the reservoir distribution dataset of the north slope of Tianshan River Basin, which is comprehensively prepared by using topographic map and remote sensing image. The scale is 250000, and the projection is latitude and longitude. The data includes spatial data and attribute data, and the attribute field is Name (reservoir name), reflecting the reservoir distribution status of River Basin in the northern foot of Tianshan Mountain around 2000.
0 2020-06-01
This dataset is the snow cover dataset based on the MODIS fractional snow cover mapping algorithm Coupled Regional Approach (CRA). The CRA algorithm mainly consists of three parts. (1) First, the N-FINDR (Volume Iterative Approach) and OSP (Orthogonal Subspace Projection) are used to automatically extract the endmember according to the settings (extracting 30 end endmembers). (2) On the basis of automatic extraction, combined with the IGBG land cover type map, six types of endmembers of snow, vegetation, cloud, soil, rock and water are selected by the manual screening method, and an annual spectrum database is established according to the 2009 image. There are 3 spectra in the early, middle and late months and 36 spectra a year. (3) The established spectral database is used as a priori knowledge, and based on prior knowledge, the fully constrained linear unmixing method (FCLS) for subpixel decomposition is used to obtain the fractional snow cover products. The NDSI ratio algorithm with improved topographic effect is used to obtain the snow cover area, the spatiotemporal data are then interpolated, and, finally, the multisource data fusion with the AMSR-E microwave snow depth product is undertaken. The dataset adopts a latitude and longitude (Geographic) projection method. The datum is WGS84, and the spatial resolution is 0.005°. It provides the daily cloudless snow cover area map of the Tibetan Plateau from 2008 to 2010. The data set is stored by year and consists of 3 folders from 2008 to 2010. Each folder contains the classification results of the daily snow cover of the current year. It is a tif file with the naming rule YYYY***.tif, in which YYYY represents the year (2008-2010), and *** represents the day (001~365/ 366). It can be opened directly with ARCGIS or ENVI.
0 2019-09-15
At the end of September and the beginning of October, 2013, desert plants in typical areas of heihe basin stopped their growth period to conduct year-end ecological survey. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
0 2020-03-15
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn