• 黑河综合遥感联合试验:扁都口加密观测区PROBA CHRIS地面同步样方调查数据集(2008年7月18日)

    The dataset of ground truth measurements synchronizing with PROBA CHRIS was obtained in 21 quadrates of the Biandukou foci experimental area on Jul. 18, 2008. Observation items included: (1) GPS by GARMIN GPS 76; (2) species by manual cognition; (3) the plant number by manual work, (4) the height by the measuring tape repeated 4-5 times, (5) the chlorophyll content by SPAD 502; (6) the coverage by manual work; (7) photo taking by Nikon D80 with a lens of Sigma 8mm F3.5 EX DG CIRCULAR FISHEYE, shooting straight downwards at the height of 1.5m; original photos were in JPG format and the processed data in Excel format. (8) the biomass (samples over 0.5m×0.5m) by wet weight and dry weight; as Excel files.

    0 2019-09-11

  • 黑河综合遥感联合试验:盈科绿洲加密观测区光合作用有效辐射比率(FPAR)日变化观测数据集

    The dataset of diurnal FPAR change observations was obtained in the Yingke oasis foci experimental areas. Observation items included: (1) Maize canopy reflectance spectra by ASD and 50% grey board, leaf SPAD by the chlorophyll meter and leaf photosynthesis by LI-6400 in Yingke oasis maize field on Jul. 5, 2008 (fixed point observations from 10:00-20:00 at intervals of one hour, and half an hour from 16:00) Besides, Photo: photosynthetic rate (µmol CO2 m-2 s-1), Cond: stomatal conductance (mol H2O m-2 s-1), Ci: intercellular CO2 viscosity (µmol CO2 mol-1), Trmmol: transpiration rate (mmol H2O m-2 s-1), VpdL: vapor pressure deficiency of leaves (kPa), Tleaf: leaf temperature (°C), ParIn_µm: active radiation of interior photosynthesis (µmol m-2 s-1), and ParOutµm: active radiation of outdoor photosynthesis (µmol m-2 s-1) were all archived. (2) Maize canopy reflectance spectra, leaf photosynthesis and diurnal FPAR change by ASD (Institute of Remote Sensing Applications), 50% grey board (Institute of Remote Sensing Applications), LI-6400 (Institute of Remote Sensing Applications) and SUNSCAN (Beijing academy of Agriculture and Forestry Sciences). Based on calibration lamp data (serial number: 64831), radiance spectrum on Jul. 9 by 1050 spectrometer (Beijing academy of Agriculture and Forestry Sciences) and 50% grey board and 99% white board calibration data, the spectrum data were preprocessed. Calibration was undertaken in accordance with the following precedures: a) The original DN was converted into radiance and further into readable EXCEL format by the spectrometer-matched calibration lamp data and ASD. b) Solar radiance was got by 99% white board radiance. solar radiance=the reference board radiance/the reference board reflectance. c) Spectrum from Agriculture and Forestry Sciences was sampled at an interval of 1.438nm, which was made into data at 1nm intervals by segmentation interpolation. d) Based on b=16.087a (where a is radiance before fitting and b after fitting), radiance data got by 68731 spectrograph were processed. The original maize leaf photosynthesis data (by LI-6400) were introduced into EXCEL format, diurnal changes of each leaf were archived as one single unit according to leaf classification. Maize FPAR (the fraction of photosynthetically active radiation) was got by FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR= FPAR×canopy PAR. The unit for PAR was µmol m-2 s-1. The data included number (the whole leaf), observation time (hh:mm:ss), upper light (µmol m-2 s-1), upper reflectivity (µmol m-2 s-1), lower light (µmol m-2 s-1), lower reflectivity (µmol m-2 s-1) and Spread: variation coefficients of the probe optical intensity.

    0 2019-05-23

  • 黑河综合遥感联合试验:阿柔加密观测区PROBA CHRIS地面同步观测数据集(2008年6月23日)

    The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Jun. 23, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. Data were archived in Excel format. (2) roughness by the self-made roughness board and the camera. The processed data were archived as .txt files. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board and the observation platform made by Beijing Normal University. The processed reflectance and transmittivity were archived as .txt files. (4) LAI of stellera and pasture by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in Excel). For more details, see Readme file. Five files were included, spectrum in No.2 quadrate, multiangle observations in No.2 and 3 quadrates, roughness photos in No.2 and 3 quadrates, the fisheye camera observations, and the No.2 and 3 quadrates investigation.

    0 2019-09-12

  • 黑河综合遥感联合试验:预试验期中游干旱区水文试验区加密观测区Envisat ASAR地面同步观测数据集(2007年9月19日)

    The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in the arid region hydrological experimental area on Sep. 19, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Those provide reliable ground data for remote sensing retrieval and validation of soil moisture from Envisat ASAR image. Observation items included: (1) soil moisture measured by the cutting ring method in Linze reed land, Zhangye farmland, Zhangye gobi, Linze maize land, Linze alfalfa land, Zhangye weather station, and Linze wetland. (2) GPS measured by GARMIN GPS 76 (3) vegetation measurements including the vegetation height, the green weight, the dry weight, the sampling method, and descriptions on the land type, uniformity and dry and wet conditions (4) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) archived as Excel files are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) roughness measured by the roughness plate together with the digital camera. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing (Vol. II). The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each text files (.txt) file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking.

    0 2019-09-13

  • 黑河生态水文遥感试验:水文气象观测网数据集(大满超级站宇宙射线土壤水分-2015)

    The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

    0 2020-04-10

  • 北极植被光谱数据集(2018年7月)

    Svalbard, Spitsbergen. The archipelago in the Arctic region is the territory of the northernmost border of Norway. It is located in the north of the European continent, between the Norwegian continent and the Arctic point. Vegetation is mainly lichens and bryophytes, the only trees are small polar willow and birch. The vegetation spectrum data set collected in this area is mainly based on the pioneer plant survey of 283 sample points in the new Olson area of Svalbard Islands in the Arctic. The survey time is July 6-22, 2018. The collection place includes London Island, the Yellow River Station area and the front of glaciers, which provides background information for the study of plant distribution and change in the Arctic tundra area.

    0 2020-01-12

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(2号点自动气象站)

    This dataset contains the automatic weather station (AWS) measurements from site No.2 in the flux observation matrix from 3 May to 21 September, 2012. The site (100.35406° E, 38.88695° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.09 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m and 10 m, towards north), air pressure (AV-410BP; 2 m), rain gauge (52203; 10 m), wind speed (010C; 5 m and 10 m, towards north), wind direction (020C; 10 m, towards north), a four-component radiometer (CNR4; 4 m, towards south), two infrared temperature sensors (IRTC3; 4 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-12

  • 黑河流域明代以后古居民点分布数据集

    This data is used to restore the distribution of ancient settlements in Heihe River Basin from the Ming Dynasty to the Republic of China. The reconstruction is based on the re publication of ganzhenzhi, the re construction of new records of Suzhou and Ganzhou Prefecture and the county records of the Republic of China. At the same time, the spatial distribution data of ancient settlements in Heihe River Basin is reconstructed by combining the topographic map and remote sensing image in the 1960s. The data set includes spatial distribution data of ancient settlements in Ming, Qing and Republic of China.

    0 2020-02-22

  • 四川省1:10万土地利用数据集(1980s)

    This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

    0 2020-06-01

  • 黑河综合遥感联合试验:临泽站加密观测区机载WiDAS地面同步观测数据集(2008年5月30日)

    The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in the Linze station foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) soil moisture (0-5cm) measured nine times by the cutting ring method (50cm^3) along LY07 and LY08 quadrates, and once by the cutting ring method and once by ML2X Soil Moisture Tachometer in the six points of Wulidun farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by two handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute which were both calibrated) in the LY07 and LY08 quadrates (98 sample points and repeated three times) and the Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU,and the 40% reference board in Wulidun farmland quadrate and the desert transit zone strips. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as Excel files. (4) maize BRDF measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the 40% reference board, two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland quadrate and the desert transit zone strips. Raw spectral data were archived as binary files , which were recorded daily in detail, and pre-processed data on reflectance and transmittivity (read by ViewSpecPro) were archived as text files (.txt). (5) LAI of maize, poplar and the desert scrub measured by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards in Wulidun farmland quadrate I, the desert transit zone and the poplar forest. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (6) LAI measured by the ruler and the set square in D and H quadrates of the Wulidun farmland. Part of the samples were also measured by LI-3100 and compared with those by manual work for further correction. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

    0 2019-05-23