• 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(戈壁站)

    This dataset contains the automatic weather station (AWS) measurements from Bajitan Gobi station in the flux observation matrix from 13 May to 21 September, 2012. The site (100.30420° E, 38.91496° N) was located in a Gobi surface, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2021-01-26

  • 第三极1:100万水系数据集(2014)

    The third pole 1:100,000 Water data set includes:Different grades of river lines(Tibet_River)、Polygonal drainage pattern(Tibet_Water_poly)vector space data set and its attribute name:Name(name)、Type(Type)、water leng(leng)、water area(Area). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface

    0 2019-09-15

  • 黑河流域数字土壤制图产品(第二版):土壤厚度分布数据集(2012-2014)

    The data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). The prediction method is mainly based on the soil landscape model. The basic theory of the model is the classic soil genesis theory. The model regards the soil as the product of the comprehensive effects of climate, topography, parent material, biology and time. Scope: Heihe River Basin; Projection: Albers ﹣ conic ﹣ equal ﹣ area; Spatial resolution: 90m; Data format: ArcGIS grid; Data content: spatial distribution of soil thickness Prediction method: enhanced regression tree Environmental variables: main soil forming factors

    0 2020-03-27

  • 南北极细菌分布特征(V1.0)(2005-2006)

    The Antarctic and Arctic bacterial distribution data set provides distribution characteristics of bacteria in the Arctic and Antarctic. The collection period of the samples was from December 13,2005, to December 8,2006; 52 samples were obtained from 3 Arctic regions (Spitsbergen Slijeringa, Spitsbergen Vestpynten, and Alexandra Fjord_Highlands), and 171 samples were obtained from 5 Antarctic regions (the Mitchell Peninsula, Casey station main Power house, Robinsons Ridge, Herring Island, and Browning Peninsula). The soil surface samples were stored in liquid nitrogen after collection, shipped to a Sydney laboratory, and extracted using the FastPrep DNA kit. The extracted DNA samples were processed by 27F (5'-GAGTTTGATCNTGGCTCA-3' and 519R (5'-GTNTTACNGCGGCKGCTG-3') to amplify the 16S rRNA gene fragments. The amplified fragments were sequenced by the 454 method, and the raw data were analyzed by Mothur software. First, the sequences with poor sequencing quality were removed, the sequences were then sorted, and the chimera sequences were removed. The similarities between the sequences were calculated, the sequences with similarities above 97% were clustered into one OTU, and the OTU representative sequence was defined. By comparison with the Silva database, the OTU sequences with reliabilities greater than 80% were identified as level one. This data system compared the diversity of microorganisms in the eastern Antarctic with that in the Arctic and is of great significance for the study of the distributions of microorganisms in the Antarctic and Arctic.

    0 2020-04-29

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(9号点自动气象站)

    This dataset contains the automatic weather station (AWS) measurements from site No.9 in the flux observation matrix from 4 June to 17 September, 2012. The site (100.38546° E, 38.87239° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.34 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), rain gauge (TE525M; 10 m), wind speed (010C; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04 m), soil moisture profile (CS616; -0.02, -0.04 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), precipitation (rain, mm), wind speed (Ws_10 m, m/s), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, and Ts_4 cm, ℃), and soil moisture profile (Ms_2 cm and Ms_4 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-14

  • 塔里木河下游胡杨光合特征数据集

    Photosynthesis of Populus euphratica is mainly affected by atmospheric CO2 concentration, intercellular CO2 concentration, photosynthetic active radiation and leaf temperature when groundwater level is deep and shallow, but with the decrease of groundwater level, atmospheric CO2 concentration and photosynthetic active radiation become the main factors limiting photosynthesis of Populus euphratica. This is because when the groundwater depth is low, the groundwater supply is sufficient, and the leaves are not limited by the water supply. When the photosynthetic effective radiation is strong, the air temperature and leaf temperature are relatively high, and the relative humidity of the air is small. At this time, the photosynthesis and transpiration are both strong. Stomata mainly adapt to strong transpiration by increasing stomatal conductance, i.e. reducing stomatal resistance. At the same time, CO2 in the air continuously enters cells through open stomata, and becomes the raw material for photosynthesis together with intercellular CO2, thus causing the decrease of CO2 concentration in the air and intercellular space, which is the CO2 supply limitation that often causes photosynthesis inhibition in photosynthesis. However, when subjected to water stress, the supply of CO2 is no longer the main reason for limiting photosynthesis. When the photosynthetic effective radiation increases, the net photosynthetic rate, transpiration rate and stomatal conductance all increase. When the supply of CO2 concentration is relatively sufficient, photosynthesis will be slowed down due to the shortage of water, another necessary raw material for photosynthesis. Water use efficiency and water productivity of plants are of great practical significance for measuring and screening species in arid regions. The flow rate was 400μmol/ s and the leaf temperature was kept at 26°C using the L I-6400 portable photosynthesis analyzer, the CO2 concentration in the reference chamber was kept at 360μmol/ mol or 720μmol/ mol using the CO2 injection system, and the photosynthetically active radiation (PAR) was set at 2000,1500,1200,1000,500,300,50,0 μ mol/(m2) using the 6400-02B L ED light source. s) 。 Twelve healthy and mature leaves were selected from the east, south, west and north of each Populus euphratica to the middle and upper parts respectively, from 8 :00 to 20 :00, and photosynthetic apparatus Li 6400 (Li 6400, LiCOR, Lincoln, NE, USA) respectively measured the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs) and other gas exchange parameters of each leaf, simultaneously measured the atmospheric CO2 concentration (Ca), intercellular CO2 concentration (Ci), photosynthetic effective radiation (Pa r), atmospheric temperature (T a), leaf surface temperature (Tl), air relative humidity (RH) and other parameters, and repeated readings for each leaf 3 times. Water use efficiency (WUE) = Pn/ Tr, stomatal limitation (Ls )= 1-Ci/Ca.

    0 2020-04-02

  • 格陵兰Landsat-8影像图(2014-2015)

    A remote sensing image mosaic was generated for Greenland by processing a collection of 108 scenes of Landsat 8 OLI remote sensing images from 2014 to 2015 with DN correction, cloud removal correction, planetary reflectance correction, reflectance and RGB value conversion, image synthesis and merging, etc. The spatial resolution of the entire image is 30 m, and the stereographic projection method is adopted.

    0 2019-12-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(大沙龙站涡动相关仪-2013)

    This dataset contains the flux measurements from the Dashalong station eddy covariance system (EC) in the upper reaches of the Heihe hydrometeorological observation network from 12 August to 31 December, 2013. The site (98.941° E, 38.840° N) was located in the swamp meadow, Qilian County in Qilian Province. The elevation is 3739 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3 & Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2020-04-10

  • 黑河流域社会经济统计数据集(2000-2009)

    Data overview: This set of data mainly includes six prefecture level cities and 16 counties (Ganzhou District, Gaotai County, Shandan County, Minle County, Linze County, Sunan Yugu Autonomous County, Jinta County, Subei Mongolian Autonomous County, Suzhou District, Yumen City, Jiayuguan City, Yongchang County, Qilian County, Alxa Left Banner, Ejina Banner, Alxa Right Banner) in Heihe River Basin )The 12 social and economic data are: GDP, output value of primary industry, output value of secondary industry, output value of tertiary industry, per capita GDP, per capita disposable income of urban residents, per capita net income of rural residents, fixed asset investment, total retail sales of social consumer goods, fiscal revenue, fiscal expenditure, and total grain output (including all kinds of work) Output of the product). It is divided into county level and township level. The data period is 2000-2009.

    0 2020-10-12

  • 黑河综合遥感联合试验:扁都口加密观测区Landsat TM地面同步观测数据集(2008年3月17日)

    The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.

    0 2019-09-12