This data comes from "China's 1:100000 land use data". China's 1:100000 land use data is constructed in three years based on LANDSAT MSS, TM and ETM Remote sensing data by means of satellite remote sensing, organized by 19 research institutes affiliated to the Chinese Academy of Sciences under the national macro survey and dynamic research on remote sensing of resources and environment, a major application project of the eighth five year plan of the Chinese Academy of Sciences. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. This is the most accurate land use data product in China, which has played an important role in the national land resource survey, hydrological and ecological research.
0 2020-03-29
The ecological data of Zhangye City from 2001 to 2012 include: the reuse rate of industrial water, the comprehensive utilization rate of industrial solid, the ratio of environmental protection investment to GDP, the per capita water consumption, the share of ecological water, the use intensity of chemical fertilizer, the use intensity of pesticide, the use intensity of agricultural plastic film, and the energy consumption per unit GDP
0 2020-03-08
This data set contains data of meteorological elements observation system of farmland station downstream of heihe hydrometeorological observation network from January 1, 2015 to October 29, 2015.The station is located at sidao bridge, dalai hubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1338e, 42.0048n, and 875m above sea level.The four-component radiometer is installed at 6m, facing due south;The two infrared thermometer sensors are installed at the position of 6m, facing south, and the probe is facing vertically downward.The two photosynthetic radiometers are installed at the position of 6m, facing due south, and the probes are vertically up and down in one direction.The soil temperature probe is buried at 0cm on the surface, 2cm and 4cm underground, and 2m to the south of the meteorological tower.The soil moisture sensors are respectively buried 2cm and 4cm underground, in the south due to 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm away from the weather tower 2m due south. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: c), soil moisture (Ms_2cm, Ms_4cm) (unit:Volume water content, percentage), up and down photosynthetic effective radiation (PAR_up, PAR_down) (unit: micromole/m s). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;Due to data storage problems, data was missing from September 25 to October 01, 2015;Soil heat flux of 3 and 0cm soil temperature was missing between 6.14-6.22 due to sensor problems.Due to sensor problems, the soil temperature of 0cm occasionally appeared problems between 6.09 and 9.22.Soil heat flux 2 was missing between 10.17 and 10.29 due to sensor problems.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
0 2020-03-05
Image format: tif Image size: about 925M per scene Time range: may-october 2012 Time resolution: month Spatial resolution: 30m The algorithm firstly adopts the canopy BRDF model and presents the canopy reflectivity as a function of a series of parameters such as FAPAR, wavelength, reflectance of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI/FAPAR products by look-up table (LUT) method. See references for detailed algorithm.
0 2020-03-15
Taking 2005 as the base year, the future population scenario was predicted by adopting the Logistic model of population. It not only can better describe the change pattern of population and biomass but is also widely applied in the economic field. The urbanization rate was predicted by using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation by nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data adopted the non-agricultural population. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of GDP per capita),the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of changes in industrial structure in China and the research area lagged behind the growth of GDP and was therefore adjusted according to the need of the future industrial structure scenarios of the research area.
0 2019-09-15
This dataset contains the automatic weather station (AWS) measurements from site No.7 in the flux observation matrix from 28 May to 18 September, 2012. The site (100.36521° E, 38.87676° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.39 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020X; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). One of the infrared temperature sensors (IRT_2) was adjusted to a zenith angle of 50° after 6 August. The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
0 2019-09-15
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
0 2020-06-03
Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.
0 2020-03-28
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 26 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:10 am (UTC+8) from Zhangye airport and landed at 13:40 pm, with the flight time of 4.5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
0 2019-09-14
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of E’bao station between 11 June, 2013, and 31 December, 2013. The site (100.915° E, 37.949° N) was located on a cold grassland surface in the pasture, which is near E’bao town, Qilian County, Qinghai Province. The elevation is 3294 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (ECh2o-5; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data were missing before 31 July, 2013 because of the wiring problem. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2020-04-10
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn