• 黑河生态水文遥感试验:黑河流域中上游差分GPS定位测量数据集

    The purpose of differential GPS positioning survey is to unify multiple survey areas into the same coordinate system and realize accurate absolute positioning through joint survey with national high-level control point coordinates. Under the national geodetic coordinate system of 2000, the accurate positioning of flux observation matrix, hulugou small watershed, tianmuchi small watershed and dayokou watershed and target is completed. In order to realize the geometric correction and absolute positioning of optical image, SAR image and airborne lidar data, the layout of ground control points and high-precision measurement are completed. In the middle reaches of the area, one national high-level control point is jointly surveyed in the five directions of East, South, West, North and middle. Measuring instrument: There are 3 sets of triple R8 GNSS system. Measurement principle: For the control network encryption point, it is connected with the high-level known points in four quadrants around the survey area and distributed evenly in the survey area. For the ground control point (GCP), the obvious characteristic points (such as house corner, road intersection, inflection point, etc.) of the ground layout target and the independent ground objects are adopted and evenly distributed in the survey area. For the ground points with high accuracy requirements, the principle of average value of multiple (at least three) measurements is adopted. Measurement method: In the test area, the control network is encrypted, and GPS static measurement and national high-level control network are used for joint measurement and calculation. During measurement, multiple GPS receivers conduct static synchronous observation at different stations, and the observation time is strictly in accordance with the control network measurement specifications. The ground points in the test area are accurately located. GPS-RTK positioning technology is used and the national high-level control points are used to calibrate to the local coordinate system. When the mobile station obtains the fixed solution during the coordinate acquisition, the measurement is carried out again and the single measurement lasts for 5S. Measuring position: (1) Flux observation matrix 17 stations, Las tower, waternet, soilnet and bnunet nodes in the core area of flux observation matrix; ground control points in CASI flight area; ground corner reflector positions in radar coverage area; ground target positions in lidar flight area. (2) Hulugou small watershed Ground target location of lidar flight area. (3) Tianmuchi small watershed Ground target location of lidar flight area. (4) Dayokou Basin Satellite image geometric correction ground control point. Data format: GPS static survey, the original data format is ". Dat" and ". T01" (or ". T02") files (or converted renix data) and "field record". GPS-RTK survey, the original project is ". Job" file (or converted ". DC" file). The test results are submitted in the format of exported ". CSV" data, which can be viewed and edited by Excel software. Measurement time: June 19, 2012 to July 30, 2012

    0 2020-03-13

  • AMSR-E全球陆表被动微波遥感发射率数据集(2002-2011)

    Microwave emissivity of the surface characterization of the object to launch the ability of microwave radiation, spaceborne passive microwave emissivity can on macro, large scale integral expression of epicontinental microwave radiation is a passive microwave surface parameters in quantitative inversion experience for one of the important basic data, is also on the large scale understand epicontinental microwave radiation in a way.This data set is considered to carry on the Aqua satellite advanced microwave scanning radiometer (amsr-e) and moderate resolution imaging spectroradiometer (MODIS) synchronous observation characteristics, using the MODIS land surface temperature and atmospheric water vapor data as input, by considering the effects of atmospheric emissivity estimation model, produced a global sky conditions during the running of amsr-e sensor (June 2002 ~ October 2011) of the epicontinental multichannel bipolar microwave instantaneous emission rate.Through product low-frequency radio signal, data alignment, statistic analysis, the different emissivity characteristics of surface coverage condition, frequency dependence and correlation studies conducted confirmatory analysis, the results show that the instantaneous dynamic details of emissivity is rich, standard deviation within 0.02 month daily variation, the change of time and space, frequency dependent on and related to the understanding of the natural physical process. This data set includes amsr-e global land surface daily, daily, daily, monthly and monthly products in the whole life cycle, which can be used to carry out satellite based passive microwave remote sensing simulation, land surface model, and inversion research of land surface temperature, snow cover, atmospheric precipitation/moisture/precipitation.The projection coordinates of the data adopt the standard EASE-GRID projection, and the data storage method is binary floating point lattice (the size of the matrix is 1383*586). After the data is obtained, ENVI/IDL and other software or the corresponding program code can be read in the form of binary files. All land surface emissivity data produced are named according to the following rules: RADI_AMSRE_EM # # # # _yyymmdd_EG_V. Bin For example, file name: RADI_AMSRE_EM01_20060101_EG_V# EM##: 01 means daily, 05 means 5 days, 10 means ten days, HM means half a month, MO means a month Yyyymmdd: yyyy means year, mm means month, and dd means date V##: version number, such as 0.1, 1.0, etc., the units digit is the official version RADI: institute of remote sensing and digital earth, Chinese academy of sciences AMSRE: advanced microwave scanning radiometer

    0 2020-03-28

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(戈壁站涡动相关仪)

    This dataset contains the flux measurements from the Bajitan Gobi station eddy covariance system (EC) in the flux observation matrix from 31 May to 15 September, 2012. The site (100.30420° E, 38.91496° N) was located in Gobi surface, which is near Zhangye, Gansu Province. The elevation is 1562.00 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-12

  • 西南极冰盖表面物质平衡数据(1800-2000)

    1 High resolution gridded West Antarctic surface mass balance dataset, its project is Polar Stereographic Projection 2. The kriging like interpolation method is used to reconstruct the high‐spatial resolution surface mass balance (SMB) over the West Antarctic Ice Sheet (WAIS) from 1800 to 2010, based on ice core records, the outputs of the European Centre for Medium‐Range Weather Forecasts “Interim” reanalysis (ERA‐Interim) as well as the latest polar version of the Regional Atmospheric Climate Model (RACMO2.3p2). 3. Its accuracy is higher than reanalysis data. 4. Temporal resolution: 1800-2010; Temporal resolution: 1 year; Spatial coverage : the whole West Antarctic Ice Sheet, Spatial resolution: 25km х 25km

    0 2020-01-19

  • 黑河流域研究区边界

    1、 The basin boundary of Heihe River Basin is based on the high-precision digital elevation model (DEM), which is obtained by using GIS hydrological analysis function analysis, and refers to remote sensing image, topographic map, ground investigation and previous research results. The surface catchment area of Heihe River basin covers an area of about 255000 km2, starting from the middle section of Qilian Mountains in the south, the Gobi Altai Mountains in Mongolia in the north, the Mazong mountains in the West and the Yabulai mountains in the East. Compared with the traditional Heihe River Basin, the new basin has increased Badain Jilin desert, Guizi lake, the northern part of Mazong mountain and the southern foot of Altai Mountain in Outer Mongolia Gobi. Explanation: the nanshihe River and beishihe River are the rivers formed by the leakage of the alluvial fan of Shule River. They form an independent hydrological unit (Huahai basin water systems) with Ganhaizi as the end lake, together with youYou River, Baiyang River and duanshankou river. The relationship between the hydrological unit and the Heihe River Basin is greater than that between the hydrological unit and the Shule River, which should be regarded as a part of the Heihe River Basin. Considering the current situation of modern water resources utilization, Beishi river has been directly connected with the main stream of Shule River through artificial transformation, and it is an important channel for water transmission from Shule River to Ganhaizi, and has become an important tributary of Shule River in fact. Under the influence of a series of water conservancy projects, the surface hydraulic connection between youyou River, Baiyang River and Shule River is far greater than that between youyou River and TaoLai river. 2、 Revised boundary of Yellow River Commission in Heihe River Basin On the basis of the Heihe River basin boundary revised by the Yellow River Water Conservancy Commission of the Ministry of water resources in 2005, the revised boundary of Heihe River Basin is obtained by using high-precision digital elevation model (DEM), reference remote sensing image, 1:100000 topographic map, ground investigation and other data. The basin boundary is about 76000 km2, among which the upper Qilian mountain middle section boundary is extracted strictly according to the ridge line by using DEM according to the GIS hydrological analysis function, and the lower north boundary is divided according to the boundary line according to the international convention. 3、 Study area boundary of Heihe River Basin According to the extended study area generated by the basin boundary of Heihe River Basin, it is mainly for the demand of model data input. The above three boundaries are to provide a unified study area boundary for the planned project of Heihe River Basin. It is suggested to use the revised boundary of Heihe River Basin yellow Committee as the core study area boundary.

    0 2020-03-08

  • 祁连山综合观测网:黑河流域地表过程综合观测网(混合林站物候相机观测数据集-2018)

    The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

    0 2020-07-25

  • 黑河生态水文遥感试验:黑河流域中游果园红外温度观测数据集

    A land surface temperature observation system was set up in apple orchard near by the No.17 eddy covariance system of the MUlti-Scale Observation experiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data of apple trees for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous apple orchard in Zhangye Experiment Field, Gansu Academy of Agricultural Sciences. It’s 4 meters away from southwest of No.17 eddy covariance system, and observation height is 4.55 m. Crown size of observed apple tree is 4 m × 4 m. Underlying surface of observation site is mainly apple trees. The coordinates of this site: 38°50′41.70" N,100°22′11.40" E. Observation Instrument: The observation system consists of one SI-111 infrared radiometers (Campbell, USA) installed vertically downward to apple tree. Observation Time: This site operates from 3 August, 2012 to 27 September, 2012. Observation data laagered by every 1 minute uninterrupted. Output data contained sample data of every 1 minute. Accessory data: Land surface (apple tree) infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Target_C_Avg, apple tree temperature @ 4.55 m (℃); SBT_C_Avg, body temperature of SI-111 sensor (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.

    0 2019-09-15

  • 新疆维吾尔自治区1:10万土地利用数据集(1995)

    This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

    0 2020-06-11

  • 黑河生态水文遥感试验:黑河流域30m/月合成植被指数(NDVI/EVI)数据集(2011-2014)

    The 30 m / month vegetation index (NDVI / EVI) data set of Heihe River basin provides the monthly NDVI / EVI composite products from 2011 to 2014. This data uses the characteristics of HJ / CCD data of China's domestic satellite, which has both high time resolution (2 days after Networking) and spatial resolution (30 m), to construct multi angle observation data set. The average composite MC method is used as the main algorithm for synthesis, and the backup algorithm uses VI method. At the same time, the main observation angles of the multi-source data set are used as part of the quality descriptor to help analyze the angle effect of the composite vegetation index residue. The remote sensing data acquired every month can provide more angles and more observations than the single day sensor data, but the quality of multi-phase and multi angle observation data is uneven due to the difference of on orbit operation time and performance of the sensor. Therefore, in order to effectively use the multi-temporal and multi angle observation data, before using the multi-source data set to synthesize the vegetation index, the algorithm designs the data quality inspection of the multi-source data set, removing the observation with large error and inconsistent observation. The verification results in the middle reaches of Heihe River show that the NDVI / EVI composite results of the combined multi temporal and multi angle observation data are in good agreement with the ground measured data (R2 = 0.89, RMSE = 0.092). In a word, the 30 m / month NDVI / EVI data set of Heihe River Basin comprehensively uses multi temporal and multi angle observation data to improve the estimation accuracy and time resolution of parameter products, so as to realize the stable standardized products from scratch and better serve the application of remote sensing data products.

    0 2020-03-13

  • 黑河生态水文遥感试验:水文气象观测网数据集(大满超级站下层涡动相关仪-2014)

    This data set contains the eddy correlation-meter observation data from January 1, 2014 to December 31, 2014 at the lower level of the daman superstation in the middle reaches of the heihe hydrometeorological observation network.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

    0 2020-04-10