The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.
0 2020-04-10
Svalbard, Spitsbergen. The archipelago in the Arctic region is the territory of the northernmost border of Norway. It is located in the north of the European continent, between the Norwegian continent and the Arctic point. Vegetation is mainly lichens and bryophytes, the only trees are small polar willow and birch. The vegetation spectrum data set collected in this area is mainly based on the pioneer plant survey of 283 sample points in the new Olson area of Svalbard Islands in the Arctic. The survey time is July 6-22, 2018. The collection place includes London Island, the Yellow River Station area and the front of glaciers, which provides background information for the study of plant distribution and change in the Arctic tundra area.
0 2020-01-12
This dataset contains the automatic weather station (AWS) measurements from site No.2 in the flux observation matrix from 3 May to 21 September, 2012. The site (100.35406° E, 38.88695° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.09 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m and 10 m, towards north), air pressure (AV-410BP; 2 m), rain gauge (52203; 10 m), wind speed (010C; 5 m and 10 m, towards north), wind direction (020C; 10 m, towards north), a four-component radiometer (CNR4; 4 m, towards south), two infrared temperature sensors (IRTC3; 4 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
0 2019-09-12
This data is used to restore the distribution of ancient settlements in Heihe River Basin from the Ming Dynasty to the Republic of China. The reconstruction is based on the re publication of ganzhenzhi, the re construction of new records of Suzhou and Ganzhou Prefecture and the county records of the Republic of China. At the same time, the spatial distribution data of ancient settlements in Heihe River Basin is reconstructed by combining the topographic map and remote sensing image in the 1960s. The data set includes spatial distribution data of ancient settlements in Ming, Qing and Republic of China.
0 2020-02-22
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
0 2020-06-01
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in the Linze station foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) soil moisture (0-5cm) measured nine times by the cutting ring method (50cm^3) along LY07 and LY08 quadrates, and once by the cutting ring method and once by ML2X Soil Moisture Tachometer in the six points of Wulidun farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by two handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute which were both calibrated) in the LY07 and LY08 quadrates (98 sample points and repeated three times) and the Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU,and the 40% reference board in Wulidun farmland quadrate and the desert transit zone strips. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as Excel files. (4) maize BRDF measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the 40% reference board, two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland quadrate and the desert transit zone strips. Raw spectral data were archived as binary files , which were recorded daily in detail, and pre-processed data on reflectance and transmittivity (read by ViewSpecPro) were archived as text files (.txt). (5) LAI of maize, poplar and the desert scrub measured by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards in Wulidun farmland quadrate I, the desert transit zone and the poplar forest. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (6) LAI measured by the ruler and the set square in D and H quadrates of the Wulidun farmland. Part of the samples were also measured by LI-3100 and compared with those by manual work for further correction. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
0 2019-05-23
Landsat 5 was launched in March 1984 and has been in orbit for 16 years. The thematic mapper (TM) sensor on Landsat 5 consists of seven bands, all of which have a resolution of 30m except for band 6, which has a resolution of 120m. Currently, there are 23 TM data sets in heihe river basin.The obtained time was 1987-08-15, 1987-09-14, 1987-10-09, 1988-06-28, 1989-05-09, 1990-07-30, 1990-08-21 (2 scenes), 1990-08-28, 1990-08-30, 1990-09-15 (2 scenes), 1991-09-02, 1995-08-19, 1995-08-21, 2002-06-13,2003-09-12, 2007-09-23, 2008-03-17, 2008-07-07, 2008-07-23. The product is class L1 and has been geometrically corrected.
0 2020-06-08
The data set includes the observation data of river water level and velocity at No. 6 point in the dense observation of runoff in the middle reaches of Heihe River from January 1, 2014 to December 31, 2014. The observation point is located in Gaoya National Hydrological Station, zhaojiatunzhuang, Ganzhou District, Zhangye City, Gansu Province. The riverbed is sandy gravel with stable section. The longitude and latitude of the observation point are n39 ° 08'06.35 ", E100 ° 25'58.23", 1420 m above sea level, and 50 m wide river channel. Hobo pressure water level gauge is used for water level observation, with acquisition frequency of 60 minutes. Data description includes the following two parts: Water level observation, 60 minutes in unit (cm) in 2014; Data covers the period of January 1, 2014 solstice December 31, 2014; Flow observation, unit (m3); According to the monitoring flow of different water levels, the flow curve of water levels was obtained, and the change process of runoff was obtained by observing the process of water levels.The missing data are uniformly represented by the string -6999. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).
0 2020-03-03
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 at the aruyangpo station, upstream of heihe hydrometeorological observation network.The station is located in yangpo, north of ahrou township, qilian county, qinghai province.The latitude and longitude of the observation point is 100.5204E, 38.0898N and 3529m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;Two photosynthetically active radiators were installed at 6m, facing due south, and one probe was vertically upward and downward.The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to problems with the solar controller, data was missing between July 28 and August 14, 2014;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
The data set contains the data of thermal diffusion fluid flow meter in the hydrometeorological observation network from January 1 to December 31, 2015. The study area is located in huyang forest, ejin banner, alxa league, lower reaches of heihe, Inner Mongolia autonomous region.According to the different height and diameter at breast height of iminqak, choose install Thermal diffusion flow meter sample tree (Thermal Dissipation SAP flow velocity Probe, TDP), domestic TDP pin type Thermal diffusion plant flow meter, model for TDP30.The TDP1 point and TDP2 point of sample plots were set in the vicinity of mixed forest station and populus populus station, respectively.Sample tree height from high to low in turn for TDP2 (16.4 meters, 18.3 meters, 16.9 meters), TDP1 (12.5 meters, 13 meters, 14 meters), diameter at breast height order from large to small is TDP1 (48 cm, 41.6 cm, 46.6 cm), TDP2 (33.8 cm, 38.5 cm, 42.3 cm), density of TDP1 respectively (0.0158 per square meter) tree, TDP2 (0.0116 per square meter), to represent the whole area of populus euphratica transpiration measurement.Two sets of probes are installed in each sample tree, with a height of 1.3 meters and a direction of east and west of the sample tree. The original observation data of TDP is the temperature difference between the probes, and the collection frequency is 10s, with an average output of 10 minutes.The published data are calculated and processed trunk flow data, including flow rate V (cm/h), flux Fs (cm3/h) and daily transpiration Q (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Qiao et al. (2015) for observation data processing.
0 2020-03-05
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn