• 黑河综合遥感联合试验:临泽草地加密观测区光合作用有效辐射比率(FPAR)日变化观测数据集

    The dataset of diurnal change of FPAR observations was obtained by the quantum meter in the Linze grassland foci experimental area. Incident and reflected radiation of canopy, and land surface in reed, saline grass, alfalfa, cumin and barley were measured and diurnal changes of PAR and Fpar were also acquired. Observations were carried out: In plot E (barley) and cumin field on Jun. 6, 2008; plot D (alfalfa) and plot E on Jun. 11; plot D and E on Jun. 15; plot E on Jun. 16; plot A (reed) on Jun. 20; plot B (saline) on Jun. 22; plot D and E on Jun. 23; plot B (saline) on Jun. 24; plot A and plot E on Jun. 29. 14 Excel files, one Word and one .TXT were archived. See Water: The dataset of setting of the sampling plots and stripes in the Linze grassland foci experimental area for more information.

    0 2019-05-23

  • 黑河生态水文遥感试验:水文气象观测网数据集(混合林站涡动相关仪-2013)

    This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 12 July to 31 December, 2013. The site (101.134° E, 41.990° N) was located in the Populus and Tamarix surface, Ejin Banner in Inner Mongolia. The elevation is 874 m. The EC was installed at a height of 22 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of sonic anemometer, data during 16 August to 17 September were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-14

  • 黑河流域数字土壤制图产品(第二版):土壤容重分布数据集(2012-2014)

    The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF;

    0 2020-03-27

  • 黑河生态水文遥感试验:水文气象观测网数据集(峨堡站自动气象站-2015)

    The data set contains meteorological observation data of E’bao station upstream of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in qinghai qilian county E’bao town grassland, the underlying surface is alpine grassland.The latitude and longitude of the observation point are 100.9151E, 37.9492N, and 3294m above sea level.The air temperature and relative humidity sensors are set up at 5m, facing due north.The barometer is installed in an anti-skid box on the ground;The inverted bucket rain gauge is installed at 10m;Wind speed and direction sensors are set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe is buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, in the south due to 2m from the meteorological tower.The soil moisture probe is buried 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, directly to the south of 2m from the meteorological tower.The soil hot flow plates (3) are successively buried in the ground 6cm, in the south due to 2m from the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The four-component radiation and infrared temperature were between October 11, 2015 and November 05, 2015.11.1-11.5 re-adjustment of observation tower instruments, data missing;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10-10:30;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-04-10

  • 黑河流域LAI地面观测数据集(2011)

    The dataset is Lai data of ground sample points in Heihe River Basin, collected by LAI-2000 canopy analyzer. The collection area is located in Zhangye rural demonstration base, Ejina Banner, Jiuquan Satellite Center (2011) and other areas. The main measured vegetation is corn. The Lai value of maize was obtained by using lai2000, and the observation was repeated twice in the mode of one up four down. Cd202 was used to obtain the leaf area of each leaf of maize plant, and three maize plants were collected.

    0 2020-07-30

  • 格陵兰GISP2地区氧同位素数据(818-1987)

    The Greenland Ice Sheet Project Two (GISP2), initiated by the United States, has provided detailed oxygen isotope data for a time span of more than 100,000 years, covering almost the entire glacial-interglacial cycle. These data include the oxygen isotope changes from 818 to 1987, with a clear record showing that the Little Ice Age was the coldest period of the past 1000 years. Fluctuating warming occurred from 1850 to 1987, and the changes were consistent with those of GRIP, NGRIP and the latest NEEM ice core obtained in Greenland. This finding indicated that the snow and ice records from the Greenland ice sheet were highly consistent. The physical meaning of each variable is as follows: First column: ice core depth; second column: oxygen isotope value; third column: time

    0 2019-09-15

  • 黑河综合遥感联合试验:冰沟流域加密观测区太阳分光光度计观测数据集(2008年3月15日至4月2日)

    The dataset of sun photometer observations was obtained in the Binggou watershed foci experimental areas (N38°04′1.4″/E100°13′15.6″, 3414.41m) from Mar. 15 to Apr. 2, 2008 (to be specific, the daytime of 15-03-2008, 16-03-2008, 17-03-2008, 18-03-2008, 19-03-2008, 21-03-2008, 22-03-2008, 23-03-2008, 24-03-2008, 25-03-2008, 26-03-2008 and 27-03-2008). Those provide reliable data for retrieval of optical depth, Rayleigh scattering, aerosol optical depth, column water vapor (through data in 936 nm) and with various parameters in 550nm, the horizontal visibility can be further developed by MODTRAN or 6S. The optical depth in 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were all acquired. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empirical method, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors in instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibration in the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from the empirical method, and need further validation. Raw data were archived in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two subfolders including raw data and processed data (Geometric Positions and the Total Optical Depth of Each Channel and Rayleigh Scattering and Aerosol Optical Depth of Each Channel), and three data files (Directions on Data Observations, Raw Data and Proprocessed Data) were archived.

    0 2019-05-23

  • 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区土壤温度剖面观测数据集(2008年5月-7月)

    The dataset of soil temperature profile (5cm, 10cm, 15cm and 20cm) observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas from May 27 to Jul. 13, 2008. Diurnal observations were carried out in the bare land near No. 5 building of the resort at 6:00 and 12:00 from May 27 to Jun. 14, and in Yingke oasis No. 4 plot at 10:00 from Jun. 15 to Jul. 13. Besides, intensive observations were carried out at an interval of one hour from 6:00 on Jun. 2 to 6:00 on 3, 2008.

    0 2019-09-14

  • 耦合模式比较计划第6阶段CNRM-CM6-1模式全球生态系统呼吸月数据(1850-2014)

    The data set is the global ecosystem respiratory data, including the ecosystem autotrophic respiration (Ra) and heterotrophic respiration (Rh). It was obtained by the CNRM-CM6-1 mode simulation of CMIP6 under the Historical scenario. The time range of the data covers from 1850 to 2014, the time resolution is a month, and the spatial resolution is about 1.406°×1.389°. For the simulated data details, please go to the following link: http://www.umr-cnrm.fr/cmip6/spip.php?article11.

    0 2019-09-13

  • 塔里木河流域居民点数据集(2000)

    The data is the distribution data of the settlements in the Tarim River Basin, mainly including the distribution of cities, counties, towns, and villages in the Tarim River Basin. The data mainly has two attribute fields: Code (settlement code), Name (settlement name)

    0 2020-03-31