This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since January 2014. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. Please refer to "waternet data document 20141206. Docx" for details
0 2020-03-13
This dataset provides the estimated results of land cover change (IGBP classification) in 2040, 2070 and 2100 of Heihe River under the latest cmip5 based greenhouse gas emission scenario RCPs (representative concentration pathways). Spatial resolution: 1km. Time period: RCP (2.6, 4.5, 8.5) three scenarios, each scenario corresponding to three time periods: t1:2040, t2:2070, t3:2100. File naming rules: take "HLCs rcp26_" as an example to explain: in the naming, "HLCs" refers to the land cover scenario of Heihe River Basin, rcp26 refers to the rcp2.6 scenario of cmip5, "_40" refers to the future scenario period of 2040, the complete file name means the land cover prediction data of Heihe River Basin in 2040 under the rcp26 scenario, and so on.
0 2020-07-30
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS450 and BLS900, produced by Germany. The north tower was set up with the BLS450 receiver and the BLS900 transmitter, and the south tower was equipped with the BLS450 transmitter and the BLS900 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 22.45 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS450 and BLS900. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>1.43E-13). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the BLS450 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2020-07-25
The dateset of sun photometer observations was obtained in the Biandukou foci experimental area from Mar. 7 to 17, 2008, simultaneous with MODIS and TM. Those provide reliable data for atmosphere correction of the same period in this area. Atmospheric parameters were measured by CE318. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired. Column water vapor can also be retrieved according to data in 936 nm. The dataset archived in txt files includes processed data on Mar. 7, 14 and 17 respectively.
0 2019-09-15
The dataset of automatic meteorological observations was obtained from Jun. 1, 2008 to Dec. 31, 2009 at the Huazhaizi desert station which is located in Anyangtan (E100°19'06.9″/N38°45'54.7″), south of Zhangye city, Gansu province,. The experimental area, situated in the middle stream of Heihe river, with a flat and open terrain and sparse vegetation cover is an ideal desert observing field. Observation items included the multi-layer (2m and 10m) wind speed and direction, the air temperature, precipitation, the four components of radiation, the surface infrared temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 160cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 160cm) and soil heat flux (5cm & 10cm). The raw data were level0 and the data after basic processes were level1; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate.. As for detailed information, please refer to “Meteorological and Hydrological Flux Data Guide".
0 2019-09-15
The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.A large aperture scintillator of BLS900 type is installed in the downstream. The north tower is the receiving end and the south tower is the transmitting end.The observation period is from January 1, 2017 to December 31, 2017.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.131e, 41.987 N, with an elevation of about 873m.The effective height of the large aperture scintillator is 25.5m, the optical diameter length is 2350m and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (e-14 Cn2 > 7.58);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction.Due to the problem of data storage unit, data of large aperture scintillator was missing from February 21 to March 5, and July 10 to August 18, 2017. A few notes on published data :(1) data missing time is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
0 2020-03-05
This data includes FAPAR and LAI data of ground sample points collected in 2012.The acquisition equipment were SunScane and lai-2000.Among them, the spread value was obtained by FAPAR measurement for 4 times.The sampling sites were located around zhangye on July 15, 2012 at solstice on July 4, 2012, including arol, linze, jiulongjiang forest farm, danoguchi and wuxing village.A total of 637 sets of data were measured.
0 2020-03-07
This data comes from "China's 1:100000 land use data". China's 1:100000 land use data is constructed in three years based on LANDSAT MSS, TM and ETM Remote sensing data by means of satellite remote sensing, organized by 19 research institutes affiliated to the Chinese Academy of Sciences under the national macro survey and dynamic research on remote sensing of resources and environment, a major application project of the eighth five year plan of the Chinese Academy of Sciences. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. This is the most accurate land use data product in China, which has played an important role in the national land resource survey, hydrological and ecological research.
0 2020-03-26
In the late June and early July of 2014, the dominant species of desert plants in the lower reaches of Heihe River, Lycium barbarum and Sophora alopecuroides, were selected. Using the LI-6400 portable photosynthesis system (LI-COR, USA), the photosynthetic and water physiological characteristics of desert plants were measured and analyzed.
0 2020-01-10
This data set contains meteorological element observation data from January 1, 2015 to December 31, 2015 from dashang station, upstream of heihe hydrometeorological observation network.The station is located in shalantan, west of qilian county, qinghai province.The latitude and longitude of the observation point is 98.9406e, 38.8399n and 3739m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil hot plates (3 pieces) are buried in the ground 6cm underground and 2m to the south of the weather tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
0 2020-04-10
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn