As the main parameter in the land surface energy balance, surface temperature indicates the degree of land-atmosphere energy and water transfer and is widely used in research on climatology, hydrology and ecology. In the study of frozen soil, climate is one of the decisive factors for the existence and development of frozen soil. The surface temperature is the main climatic factor affecting the distribution of frozen soil and affects the occurrence, development and distribution of frozen soil. It is the upper boundary condition for modelling frozen soil and is significant to the study of hydrological processes in cold regions. The data set was based on the DEM and observation station data of the Tibetan Plateau Engineering Corridor and analysed the changing trend of surface temperature on the Tibetan Plateau from 2000 to 2014. Using the surface temperature data products MOD11A1/A2 and MYD11A1/A2 of MODIS aboard Terra and Aqua, the surface temperature information under cloud cover was reconstructed based on the spatio-temporal information of the images. The reconstruction information and surface temperature representativeness problems were analysed using information obtained from 8 sites, including the Kunlun Mountains (wetland, grassland), Beiluhe (grassland, meadow), Kaixinling (meadow, grassland), and Tanggula Mountain (meadow, wetland). According to the correlation coefficient (R2), root-mean-square error (RMSE), mean absolute error (MAE) and mean deviation (MBE), the following results were obtained: (1) the reconstruction accuracy of MODIS surface temperature under cloud cover is higher when it is based on spatio-temporal information; (2) the weighted average representation is the best when generalizing four observations of Terra and Aqua. By analysing the reconstruction of MODIS surface temperature information and representativeness problems, the average annual MODIS surface temperature data of the Tibetan Plateau and the engineering corridor from 2000 to 2010 were obtained. According to the data set, the surface temperature from 2000 to 2010 also experienced volatile rising trends from 2000 to 2010, which is basically consistent with the changing trend of the climate change in the permafrost regions of the Tibetan Plateau and the Qinghai-Tibet Engineering Corridor.
0 2020-04-29
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Radiative temperature of maize, wheat and the bare land (in Yingke oasis maize field), vegetation and the bare land (Huazhaizi desert No. 2 plot) by the thermal cameras at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format and radiative files are stored in Excel format. . (3) Photosynthesis by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (4) Ground object reflectance spectra in Yingke oasis maize field, Huazhaizi maize field, Huazhaizi desert No. 1 and 2 plots, by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (IRSA), CAS. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (5) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (BNU and IRSA). Raw data, blackbody calibrated data and processed data (in Excel format) were all archived. (6) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (7) The radiative temperature of the maize canopy by the automatic thermometer (FOV: 10°; emissivity: 0.95) mearsued at nadir with an time intervals of 1s in Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (8) Maize albedo from two shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
0 2019-05-23
This dataset contains the flux measurements from the Daman superstation upper eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.372° E, 38.856° N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. The EC was installed at a height of 34 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.12 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 26 May to 30 May and 13 July to 24 September, 2013 were missing due to the sensor calibration and maintained of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
The data is the Shule River Basin land cover dataset, which is derived from "China's 1: 100,000 Land Use Data Set" in 2000. It is based on Landsat MSS, TM and ETM remote sensing data within three years by satellite remote sensing. This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. The attribute fields include: Area, Perimeter, Code(Land code), Name (land type).
0 2020-06-08
From 2000 to 2011, the main control sections of the main stream of Heihe River were Yingluo Gorge (100 ° 11 ′e , 38 ° 49 ′ n), Zhengyi Gorge (99 ° 28 ′ e, 39 ° 49 ′ n), shaomaying (99 ° 59 ′ e, 40 ° 25 ′ n), Shangdong River and Xihe River (100 ° 20 ′ e, 41 ° 02 ′ n), Juyanhai (101 ° 06 ′ e, 42 ° 13 ′ n) monthly average flow.
0 2020-03-08
This data set is a subset of 1:100000 desert spatial data in China. The 1:100000 desert spatial data set in China reflects the geographical distribution, area size, mobility and fixation degree of deserts in China. Taking the TM image of 2000 as the information source, on the basis of the coverage of the national land use map and the TM digital image information of 2000, this paper interprets, extracts, revises, and maps the sand, sand and Gravel Gobi in China by using remote sensing and geographic information system technology combined with the mapping requirements of 1:100000 scale thematic map.
0 2020-02-24
This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.
0 2020-06-09
The dataset of spectral reflectance measurements was obtained in the A'rou foci experimental area on Mar. 12, 2008. The land was covered with snow 10cm deep. Observed objects included snow, sandstone, grass and ice. The data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively, and can be opened by .txt or wordpad. Raw data were binary files direct from ASD (by ViewSpecPro).
0 2019-09-12
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component radiation occurred between June 12, 2014 and June 30, 2014. Due to the problem of collector extension board, data was missing.Soil temperature was between June 12, 2014 and June 14, 2014. Due to data collector problem, data was missing.Loss of wind speed due to sensor problem;The surface radiation temperature is between 9.2 and 10.23, and the data is missing due to the problem of collector extension board.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).
0 2020-03-04
The dataset of ground-based microwave scatterometer and ground truth observations for soil freeze/thaw cycle was obtained in No. 3 quadrate of the A'rou foci experimental area from 22:33 on Mar. 16 to 15:00 on 17, 2008. Observation items included the mean soil temperature from 0-5cm by the probe thermometer, the soil temperature at 5cm and 10cm by the glass geothermometer, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Two files were included, the microwave scatterometer and ground truth observations; both were archived in Excel format.
0 2019-05-23
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn