• 葫芦沟流域地下水位数据集(2012)

    1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2012 to December 31, 2012.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).

    0 2020-03-11

  • 黑河生态水文遥感试验:水文气象观测网数据集(下游四道桥超级站大孔径闪烁仪-2016)

    The data set contains the flux observation data of scintillator with large aperture from sidaoqiao station downstream of heihe hydrometeorological observation network.A large aperture scintillator of BLS900 type is installed in the downstream. The north tower is the receiving end and the south tower is the transmitting end.The observation time is from January 1, 2016 to December 31, 2016.The site is located in ejin banner, Inner Mongolia, with tamarix chinensis, populus populus, bare land and cultivated land under it.The latitude and longitude of the north tower is 101.137e, 42.008n, and the latitude and longitude of the south tower is 101.131e, 41.987 N, with an elevation of about 873m.The effective height of the large aperture scintillator is 25.5m, the optical diameter length is 2350m and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (e-14 Cn2 > 7.58);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).During the iterative calculation, the stability universal function of Thiermann and Grassl(1992) was selected.Please refer to Liu et al(2011, 2013) for detailed introduction.From June 8 to 16, 2016, the measurement signal of large aperture scintillator was relatively small, resulting in a large number of missing data. A few notes on published data :(1) data missing time is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-03-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(大沙龙站涡动相关仪-2016)

    This data set contains the observation data of vorticity correlativity at da-sharon station, upstream of heihe hydrometeorological observation network, from January 27, 2016 to December 31, 2016.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.Calibration of Li7500 in May 2-3, data missing;When 10Hz data is missing due to a problem with the storage card (3.20-5.01), the data will be replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-04-10

  • 黑河下游荒漠河岸林土壤水分数据集(2010-2012)

    Soil water content is the key factor affecting the transpiration water consumption of plants in desert riparian forest. In this project, the typical plant communities in the lower reaches of Heihe River are selected, with coordinates of 42 ° 02 ′ 00.07 ″ N and 101 ° 02 ′ 59.41 ″ E. through continuous measurement of soil water data in 2010-2012, the observation instrument is environscan (Australia, ICT), with observation depth of 10, 30, 50, 80 and 140cm, and observation frequency of 0.5h Understanding the mechanism of environmental regulation of transpiration water consumption of desert riparian forest in the lower reaches of Heihe River provides basic data support.

    0 2020-03-06

  • 黑河生态水文遥感试验:水文气象观测网数据集(四道桥超级站气象要素梯度观测系统-2016)

    The data set contains the data of meteorological gradient observation system of sidaqiao superstation downstream of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the four Bridges of dalaihubu town, ejin banner, Inner Mongolia.The latitude and longitude of the observation point are 101.1374e, 42.0012n, and 873m above sea level.Air temperature, relative humidity and wind speed sensors are installed at 5m, 7m, 10m, 15m, 20m and 28m, with a total of 6 layers, facing due north.The wind sensor is installed at 15m, facing due north;The barometer is installed in the waterproof box;Dump-type rain gauge installed at 28m;The four-component radiometer is installed at 10m, facing due south;The two infrared thermometers are installed at 10m, facing due south, and the probe is facing vertically down.The two photosynthetic effective radiometers are installed at a location of 10m, facing due south, with the probes pointing vertically up and down, respectively.Part of the soil sensor is installed at 2m to the south of the tower body, in which the soil heat flow plate (self-calibration formal) (3 pieces) is successively buried at 6cm underground;The average soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe was buried at 0cm on the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (200cm of soil temperature observation was added on April 22).Soil moisture sensors were embedded in the ground at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm respectively (add 200cm soil moisture observation on 22 April). The observation items are: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), up and down the photosynthetic active radiation (PAR_U_up, PAR_U_down) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_200cm) (unit: volume water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_200cm) (unit: Celsius). Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;The soil temperature of 4cm was between May 21, 2016 and May 17, 2016.(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 10:30 on 10th September 2016;(6) the naming rule is: AWS+ site name. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-03-05

  • 黑河流域1公里逐时辐射数据集(2002)

    一. Data overview In the heihe river basin simulation model development and environment construction of cross integration research, project support, ren-sheng Chen (RReDC) in the center of the renewable energy data provided by the model, on the basis of considering the data of heihe river and other radiation model parameterization scheme, by 1 km resolution DEM, heihe surface weather observation data and NECP reanalysis data, the preparation of total radiation, direct radiation and scattering radiation three data sets. 二, data processing process 1) data source Watershed basic data mainly include DEM data, as well as slope and slope direction data generated thereby.The model adopts Alberts equal area conic projection), the grid size is 1km*1km, a total of 411×562 grids, that is, the actual calculated area is about 23*10^4 km^2.The calculated year is 2002, and the temporal resolution is 1h. Two sets of NCEP/NCAR reanalysis data were used, one set was instantaneous data of 1°*1° per 6h, mainly ozone and precipitable data.The other set is based on the assimilation data of 4 times a day of 192*94 grid (which is the average value per 6h), mainly the data of total cloud cover and precipitation rate.The main reason for applying the two sets of data is that the total cloud cover changes dramatically with time, and the instantaneous data cannot control the overall change of the weather.However, it is impossible to control the weather change within 6 hours by using the average data of 6 hours. 2) method A. Short-wave solar incident radiation model in clear sky horizontal plane.Rayleigh scattering, aerosol absorption, water vapor absorption, ozone absorption and heterogeneous mixed gases (O2, CO2, etc.) are mainly considered in the calculation of direct radiation from clear sky. B. Short-wave radiation model of clear-sky solar incidence under arbitrary topographic conditions.According to the principle of solid geometry and the algorithm of the short-wave radiation of horizontal plane, a simple algorithm of the short-wave radiation considering the self-masking effect of mountain slopes is designed. C. Calculation of solar incident short-wave radiation under arbitrary terrain conditions in actual weather.Based on the Ver4Fortran source code provided by Dr. Harry d. K of the Greek institute of meteorology and atmospheric physics. D. Spatial interpolation adopts the three-dimensional interpolation method based on triangular grid. The time interpolation of the first set of data adopts linear interpolation. For specific algorithm description, please refer to: Chen rensheng, kang ersi, et al. (2006). "model of hourly incident short-wave radiation under arbitrary terrain and actual weather conditions -- a case study of heihe river basin." Chinese desert (05). 3) data verification The simulation results were verified by using the total radiation observation data of three automatic meteorological stations located in the mountainous area, xishui, linze in the middle reaches and ejinaqi in the lower reaches. The calculated results of the total radiation of xishui were relatively poor, with R2 = 0.71.The measured and calculated results of total radiation of linze and ejin flags are better, with R2 of 0.90 and 0.91, respectively. 4) conclusion It is a feasible method to calculate the solar incident short-wave radiation with large range, long time and high spatial and temporal resolution under any terrain and actual weather conditions by combining the radiation transmission parameterization scheme and remote sensing information, especially in the northwest arid region.The established model only USES DEM data of the basin and the slope and slope direction data generated thereby, while other data are reanalysis data, so it is easy to be popularized and applied.The weather changes at any time in high mountain areas. The main reason for the poor calculation effect of the model in high mountain areas is still the low spatial and temporal resolution of the total cloud cover data. Meanwhile, the inconsistency between the calculated value and the measured value partly leads to the poor comparison results.

    0 2020-03-08

  • 青藏高原珠峰、纳木错、林芝站气象数据(2006-2008)

    The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.

    0 2019-09-14

  • 黑河生态水文遥感试验:黑河流域中游LI-6400光合观测数据集

    The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the artificial oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included two main crops in the middle reaches of Heihe river: wheat and maize, which located in the town of Pingchuan in Linze and the Super Station of Wuxing, respectively. Observation periods lasted from mid-May to September. This dataset included the raw observation data and the pretreatment data of wheat and maize observed by LI-6400 during the observation periods. Objectives of observation: The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. Instrument and theory of the observation: (1) Measuring instrument: LI-6400XT Portable Photosynthesis System; (2) Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. Time and site of observation: (1) Observation site of the wheat: in the town of Pingchuan in Linze; Observation time: 2012-05-17,2012-06-08 to 2012-6-13; (2) Observation site of the maize: in the Super Station of Wuxing; Observation time: from 2012-05-19 to 2012-08-15. The time used in this dataset is in UTC+8 Time. Data processing: The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type + time”, every leaf was recorded 3 times, and then added a remark.

    0 2019-09-12

  • 黑河流域1∶10万植被图(2015)(3.0版)

    1:100000 vegetation map of Heihe River Basin, the regional scope is subject to the Heihe river boundary of Huangwei Committee, the area is about 14.29 × 104km2, the data format is GIS vector format, this version is version 3.0. The data is mainly based on ground observation data, integrated with all kinds of remote sensing data, 1:1 million vegetation map, climate, terrain, landform, soil data mapping, and compiled by cross validation. The classification standard, legend unit and system of vegetation map of the people's Republic of China (1:1000000), 2007 are adopted, including vegetation type group, vegetation type, formation and sub formation. The new version mainly unifies the codes of the new formation (74 codes in total, distinguishing the formation and the sub formation). 9 vegetation type groups, 22 vegetation types and 74 formations (sub formations) in version 2.0 were changed into 9 vegetation type groups, 22 vegetation types and 67 formations (7 sub formations). The data includes versions 2.0 and 3.0

    0 2020-07-30

  • 黑河流域不同荒漠类型植被年生态调查资料 (2011)

    At the end of September and the beginning of October, 2011, a year-end ecological survey was carried out in heihe river basin for plants of different desert types to stop growing. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.

    0 2020-03-15