• 南北极散射计冰盖表面冻融数据(2015-2019)v1.0

    The coverage time of microwave scatterometer ice sheet freeze-thaw data is updated to 2015-2019, with a spatial resolution of 4.45km. The time resolution is day by day, and the coverage range is the polar ice sheet. The remote sensing inversion method based on microwave radiometer considers the change of snow cover characteristics in space-time and space. Firstly, the DVPR time series data of scatterometer data is extracted, the high time resolution of scatterometer data is effectively used, and the influence of terrain is removed by channel difference. Then, the variance value of time series at each sampling point is simulated by generalized Gaussian model, so as to make the region. The generalized Gaussian model needs less input parameters than the traditional double Gaussian model, and the obtained threshold is also unique. Finally, the moving window segmentation algorithm is used to accurately find the melting start time, end time and duration of the wet snow point, which can effectively remove the temperature mutation in the melting or non melting period. The impact. The data of long time series microwave scatterometer are from QSCAT and ASCAT. The verification of the measured stations shows that the detection accuracy of ice sheet freezing and thawing is over 70%. The data is stored in a bin file every day. Each file of Antarctic freeze-thaw data based on microwave scatterometer is composed of 810 * 680 grid, and each file of Greenland ice sheet freeze-thaw data is composed of 810 * 680 grid (0 value: non melting area, 1 Value: melting area).

    0 2020-09-14

  • 黑河流域1km FAPAR 产品(2000-2012)

    The algorithm firstly adopts the canopy BRDF model and represents the canopy reflectivity as a function of a series of parameters such as LAI/FAPAR, wavelength, reflectivity of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and use look-up table (LUT) inversion to obtain FAPAR products.See references for detailed algorithms. Image format: tif Image size: about 1M per scene Time range: 2000-2012 Temporal resolution: 8 days Spatial resolution: 1km

    0 2020-03-08

  • 天山北麓诸河流域湖泊分布数据集(2000)

    The dataset is a lake distribution map of the north slope of Tianshan Mountain Basin, with a scale of 250,000. The projection is latitude and longitude. The data includes spatial data and attribute data. The attribute fields of the lake are NAME (name of the lake) and CODE (lake code).

    0 2020-04-06

  • 黑河流域张掖市灌溉面积数据集(1999-2011)

    Irrigation area data of Zhangye City from 1999 to 2011, including total irrigation area (effective irrigation area, forest irrigation area, orchard irrigation area, forage irrigation area and other irrigation areas), water-saving irrigation area (sprinkler irrigation area, micro irrigation area, low-pressure pipe irrigation area, canal seepage prevention area and other water-saving irrigation areas), effective irrigation area data, and Ganzhou District, Shandan District Corresponding data of county, Gaotai County, Sunan County, Linze County and Minle County

    0 2020-07-30

  • 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区BRDF观测数据集

    The dataset of BRDF observations was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. Reflectance could be got based on R = (DN1/DN0)×R0, DN1 indicating DN of the item, R0 and DN0 the reflectance and DN of the grey board. Synchronizing with WiDAS and OMIS-II, the ground observations on reflectance (-60°~60° at intervals of 10°) of maize and wheat were carried out with ASD (FOV: 25°) and the self-made observation platform (maximum height: 5m) on May 30, Jun. 9, 14, 20, 22, 26 and 30, and Jul. 1, 2008. Raw data, recorded data and processed BRDF were archived in Excel format.

    0 2019-09-12

  • 排露沟流域微气象场数据(2013)

    The meteorological field is located in 2700m grassland in the Pailougou watershed of Qilian Mountain. The date of data recording is from May 2013 to September 2013, including air humidity at 1.5m, air temperature at 3.0m, atmospheric pressure at 2.8m, precipitation at 1.3m, wind speed at 2.2m and total solar radiation at 3.1m. The units are%, ℃, PA, m, m/s and W·m-2, respectively.

    0 2020-03-12

  • 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区机载成像光谱仪OMIS-II地面同步观测数据集(2008年6月4日)

    The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 4, 2008. Observation items included: (1) ground object reflectance spectra of maize and wheat in Yingke oasis maize field by ASD FieldSpec (350~2500 nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS); and of the black and white cloth, the water body, vegetation and the cement floor in the resort calibration site by ASD (350-2500nm, fixed points observation) from BNU. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (2) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), the maize field (intensive) near the resort (the transect observation) and Huazhaizi desert No. 1 plot (the diagonal and the fixed point observation) by the handheld infrared thermometer (emissivity: 1.00). As for the fixed point observation, 25 corner points were chosen in the plot of 30m×30m, and at each point, the bare land was measured twice and the vegetation once. Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived. (3) Atmospheric parameters on the ICBC resort office roof by CE318 (produced by CIMEL in France) from Institute of Remote Sensing Applications. The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) Photosynthesis of wheat and maize by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (5) the radiative temperature vegetation (Reaumuria soongorica) and the bare land in Huazhaizi desert No. 1 plot by ThermaCAM SC2000 ( (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer at nadir in Yingke oasis maize field (2 from BNU, FOV: 10°; emissivity: 0.95, at intervals of 1s, set above the maize canopy and the bare land between ridges and the third from Institute of Remote Sensing Applications, emissivity: 1.0, at intervals of 0.05s, set above the maize canopy), Yingke wheat field (one set above the wheat canopy), Huazhaizi desert No. 1 plot (one set above the barley canopy), and in the resort calibration site (one for the cement floor). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Wheat albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) Wheat FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were from Jun. 6, 2008, archived in Excel format.

    0 2019-05-23

  • 黑河生态水文遥感试验:黑河流域中游生态水文无线传感器网络SoilNET观测数据集

    This dataset include soil moisture and soil temperature observations of 50 SoilNET Nodes during June 2012~March 2013 (UTC+8), which located in a MODIS pixel in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area, and aim to capture the spatial-temporal variance at the ~100 m scale. Each SoilNET node observe the soil moisture and soil temperature at 4 cm, 10 cm, 20 cm and 40 cm depth using the SPADE sensor with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "SoilNET_data_document.docx".

    0 2019-09-15

  • 青藏高原湖水细菌多样性调查(V1.0)(2015)

    Microbial diversity data of lakes on the Tibetan Plateau. One hundred and thirty-eight samples were collected from July 1st to July 15th, 2015, from 28 lakes (Bamco, Baima Lake, Bange Salt Lake, Bangong Lake, Bengco, Bieruozeco, Cuoeco, Cuoe (Pingcuo North), Dawaco, Dangqiongco, Dangreyongco, Dongco, Eyacuoqiong, Gongzhuco, Guogenco, Jiarebuco, Mapangyongco, Namco, Nieerco (Salt Lake), Normaco, Pengyanco, Pengco, Qiangyong, Selinco, Wuruco, Wumaco, Zharinanmuco, and Zhaxico). The salinity gradients range from 0.07-118 ppm. The DNA extraction method: The DNA was extracted using an MO BIO PowerSoil DNA kit after the lake water was filtered onto a 0.45 membrane. The 16S rRNA gene fragment amplification primers were 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3'). The sequencing method was Illumina MiSeq PE250, and the raw data were analyzed by Mothur software, including quality filtering and chimera removal. The sequence classification was based on the Silva109 database, and archaea, eukaryotic and unknown source sequences have been removed. OTUs were classified by 97% similarity, and sequences that appear once in the database were then removed. Finally, each sample was resampled to 7,230 sequences/sample. GPS coordinates, evolutionary information, and environmental factors are listed in the data.

    0 2020-04-29

  • 黑河生态水文遥感试验:水文气象观测网数据集(裸地站自动气象站-2015)

    This data set contains the meteorological element observation system data from January 1, 2015 to December 31, 2015 of the naked earth station downstream of heihe hydrometeorological observation network.The station is located in Inner Mongolia ejin banner dalaihubu town four road bridge, the underlying surface is bare ground.The longitude and latitude of the observation point are 101.1326e, 41.9993n and 878m above sea level.The four-component radiometer is installed at 6m, facing due south;Two infrared surface thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil moisture sensor is buried 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Radiation observation projects are: four components (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: degrees c). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component long-wave radiation occurred between April and July 26, 2015 due to sensor problems, data was missing;The soil heat flux was adjusted on June 5 and then decreased.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-03-04