• 黑河生态水文遥感试验:水文气象观测网数据集(垭口站自动气象站-2016)

    This data set contains meteorological observation data of meteorological elements from January 1, 2016 to December 31, 2016 on the haihewen meteorological observation network in yaokou station.The station is located in da dong shu pass, qilian county, qinghai province.The latitude and longitude of the observation point are 100.2421E, 38.0142N, and 4148m above sea level.The published data included two observation points, both of which were in the observation station of mountain pass, about 10m apart. Specifically, the air temperature and relative humidity sensors were set up at 5m, facing due north (the two observation groups output 10min and 30min respectively).The barometer is installed in an anti-skid box on the ground (two groups of observation, 10min and 30min output respectively);The inverted bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north (two groups, respectively 10min and 30min output);The four-component radiometer consists of two observation points, one of which is installed at the 6m position of the weather tower, facing due south (10min output), and the other is installed on a support 1.5m above the ground (30min output).The two infrared thermometers are installed at the position of 6m, facing south, and the probe is facing vertically downward.The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed and output for 10min and 30min respectively).The soil moisture probes were buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed and output for 10min and 30min respectively).The soil heat flux plates were buried 6cm underground (observed in two groups for 10min (3 heat flux plates) and 30min (2 heat flux plates) respectively). Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volume water content, percentage). Processing and quality control of observation data :(1) ensure 144 or 48 data per day (every 10min or 30min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the part marked by red letter in the data is the data in question;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 10:30 on 10th September 2016;(6) the naming rule is: AWS+ site name. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-04-10

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(10号点涡动相关仪)

    This dataset contains the flux measurements from site No.10 eddy covariance system (EC) in the flux observation matrix from 4 June to 17 September, 2012. The site (100.39572° E, 38.87567° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1534.73 m. The EC was installed at a height of 4.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-10

  • 黑河生态水文遥感试验:黑河下游地物光谱观测数据集

    Spectral reflectance observation was carried out for the typical underlying surface and black and white cloth in the low reaches of the Heihe River Basin during the aviation flight experiment in 2014, which will provide basic data set for the preprocessing of the flight data. 1. Observation Instrument PRS-3500 portable spectrometer, with the spectral range is 350-2500 nm, and the reference board. 2. Samples and observation methods The samples including the black and white cloth, the cantaloupe, the Tamarix chinensis, the Populus euphratica, the reeds, the weeds, the Karelinia caspica, the sandy soil, the gobi, the Sophora alopecuroides and so on. Reflectance of the reference board was measure vertically for once and then objective reflectance were measured for five times for each observation objective. 3. Observation time The typical underlying surface vegetation observation was on days of 24 July, 27 July, 31 July, 2014. The black and white cloth simultaneous observation was on 29 July, 2014. 4. Data storage The observation recorded data were stored in excel and the original spectral data were stored in *.sed files derived from the spectrometer, which can be opened by the matched software of the spectrometer or by a txt.

    0 2019-09-15

  • 黑河葫芦沟小流域典型泉流量观测数据(2012年7月)

    一. data description The data included the spring flow observation data of 5 springs in the small gully basin in July 2012. 二. Sampling location The sampling point of quan 1 is xizhigou daquan, with the latitude and longitude of 99 ° 51 '23 "E, 38 ° 14' 33" N. The sampling point of spring 2 is 20 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E,38°16' 11.44" N. The sampling point of spring 3 is 80 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '52.8 "E,38°16' 11.24" N. The sampling point of spring 4 is 120 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '55.9 "E,38°16' 11.4" N. The sampling point of quan 5 is 150 meters east of the outlet of the basin, with the latitude and longitude of 99°52 '55.9 "E,38°16' 11.5" N. 三. Test method By estimating the velocity of the spring and the cross-sectional area of the spring to estimate the size of the spring flow.

    0 2020-03-05

  • 印度喜马偕尔邦冰湖编目数据集(2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

    0 2020-06-04

  • 黑河生态水文遥感试验:天姥池小流域机载激光雷达DSM点云数据(2012年7月25日)

    On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

    0 2019-09-15

  • 浙江省1:100万湿地数据

    The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

    0 2020-10-12

  • 黑河流域生态水文综合地图集:黑河流域土地覆被图(2000)

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The land cover map of Heihe River Basin is one of the land surface layers in the atlas, with a scale of 1:2500000, positive axis and equal volume conic projection, and standard latitude of 25 47 n. Data source: land cover data of Heihe River Basin in 2000, road data of Heihe River Basin in 2010, administrative boundary data of one million Heihe River Basin in 2008, residential area data of Heihe River Basin in 2009 and 100000 river data of 2009.

    0 2020-03-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(峨堡站自动气象站-2016)

    This data set contains meteorological element observation data from January 1, 2016 to September 29, 2016 from the E’bao station upstream of heihe hydrometeorological observation network.The station is located in caochang, qilian county, qinghai province.The latitude and longitude of the observation point is 100.9151e, 37.9492n and 3294m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The problem of soil heat flux G1 occurred after August 15. The soil moisture at a depth of 160cm was between 5.12 and 6.16, and data was missing due to sensor problems.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-04-10

  • 黑河综合遥感联合试验:大野口关滩森林站超级样地雨量筒上方冠层郁闭度相机观测数据

    The dataset of forest canopy gap fraction above the rain gauges observed by the camera (PENTAX K100D, 2400×1600) was obtained at the super site (100m×100m, Qinghai spruce) around the Dayekou Guantan forest station from 9:00-10:40 on Jun. 4, 2008. Observation items included the ground-based LiDAR scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. A subplot (25m×25m) was chosen for precipitation interception observations with different canopy density, and 32 sets of photos were taken 1m above the ground. Through studying those photos, the number and location of rain gauges could be determined; and then the canopy density could also be further developed.

    0 2019-05-23