The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and International Institute for Applied System Analysis in Vienna (IIASA), which released version 1.1 on March 26, 2009. The data resolution is 1 km. The data source in China is 1: 1 million soil data. The soil classification system used is mainly FAO-90. The main fields of the soil property sheet include: SU_SYM90 (name of soil in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil with obstacles); SWR: String (characteristics of soil water content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA Soil Texture Classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of the sticky layer soil); T_CEC_SOIL: Real (soil cation exchange capacity) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field at the beginning of T_ indicates the upper soil attribute (0-30 cm), and the attribute field at the beginning of S_ indicates the lower layer soil attribute (30-100 cm) (FAO 2009). This data provides model input parameters for Earth system modelers, and in agricultural perspective, it can be used to study eco-agricultural divisions, food security, and climate change.
0 2020-03-31
halong Beach area on the west side of Qilian County, Qinghai Province. The underlying surface is swamp meadow. The latitude and longitude of the observation point is 98.9406E, 38.8399N, and the altitude is 3739m. The air temperature and relative humidity sensors are erected 5 meters above the ground, facing North; the barometer is installed in the pick-proof box on the ground; the tipping bucket rain gauge is erected 10 meters above the ground; the wind speed and direction sensor is set 10 meters above the ground, facing North; the four-component radiometer is installed 6 meters above the ground, facing South; two infrared thermometers are installed 6 meters above the ground, facing South, and the probe orientation is vertical downward; the soil temperature probes are buried respectively at 0cm on the ground surface, 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, they are located 2 meters from the meteorological tower in the South; the soil moisture sensors are buried 4cm、10cm、20cm、40cm、80cm、120cm and 160cm under the ground, 2 meters from the meteorological tower in the South; the soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: air temperature and humidity (Ta_5m, RH_5m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: meter / sec), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius) , soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm , Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2016-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Liu et al. (2018). For observation data processing, please refer to Liu et al. (2011).
0 2020-04-10
The data set contains soil observation data of typical sample points in Heihe River Basin: pH value and soil texture 1. Soil pH value: longitude, latitude and pH value of typical soil sample points. 2. Soil texture: including soil texture data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The typical soil sampling method in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the representative sample points should be collected as far as possible. According to the Chinese soil taxonomy, soil samples from each profile were taken based on the diagnostic layers and diagnostic characteristics.
0 2020-07-30
The strong spatial and temporal changes of precipitation often make it impossible to accurately know the spatial distribution and intensity changes of precipitation during the precipitation observation of conventional foundation stations. Satellite microwave remote sensing can overcome this limitation and achieve global scale precipitation and cloud observation. Compared with infrared/visible light, which can only reflect cloud thickness and cloud height, microwave can penetrate the cloud, and also use the interaction between precipitation and cloud particles in the cloud and microwave to detect the cloud and rain more directly. This data use the surface precipitation, obtained by the DPR double wave band precipitation radar carried by GPM, as the true value, soil temperature/humidity of NDVI, DEM and ERA5 as reference data. And the multi-band passive brightness temperature data of GMI is used to invert the instantaneous precipitation intensity during the warm season (May-September) in Tibetan Plateau, then the result is re-sampled to the spatial resolution of 0.1°and accumulated them to a day.
0 2021-04-09
This data set contains eddy correlativity observation data from January 1, 2014 to December 31, 2014 at the gobi station in baji tan, middle reaches of the heihe hydrometeorological observation network.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.30420E, 38.91496N and 1562.00m above sea level.The rack height of the vortex correlative is 4.6m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic anemometer (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On March 2, solstice, March 31, October 13, solstice, November 14, and December 12, solstice, December 31, 10Hz data was missing due to the memory card storage data problems, which were replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
0 2019-05-28
This data includes experimental data of grassland interception control and observation data of maximum water holding capacity of grassland. The maximum water holding capacity experiment was carried out in 2011. The main vegetation types selected are Carex, Polygonum viviparum, Plantago asiatica and Potentilla chinensis. The maximum water holding capacity experiment was carried out on each type of samples and the samples were photographed. The specific data obtained are shown in the document. The grassland canopy interception was carried out in the growing season of 2012, and was completed by artificial rainfall control experiment. At the end of the growing season, the main types of grassland in the basin were sampled according to grazing and grazing ban. During artificial rainfall, rainfall and penetrating rainfall are recorded every 1min. Finally, the grassland canopy interception is calculated by the difference between rainfall and penetrating rainfall.
0 2020-03-12
The leaf epidermis micromorphological structure of the constructive species in the arid area of the middle and lower reaches of Heihe River Basin. The plant material number is consistent with the number in the sampling table. Refer to the sampling table number to determine the material and its distribution position.
0 2020-03-07
The North American Multi-Model Ensemble (NMME) Forecast is a multi-modal ensemble seasonal forecasting system jointly published by the US Model Center (including NOAA/NCEP, NOAA/GFDL, IRI, NCAR, and NASA) and the Canadian Meteorological Centre. The data include retrieval data from 1982 to 2010 and real-time weather forecast data from 2011 to the present. The forecasting system covers the whole world with a temporal resolution of one month and a horizontal spatial resolution of 1°. NMME has nine climate forecasting models, and each contains 6-28 ensemble members, with a forecasting period of 9-12 months. The name, source, ensemble members, and forecasting period of the climate models are as follows: 1) CMC1-CanCM3, Environment Canada, 10 models, 12 months 2) CMC2-CanCM4, Environment Canada, 10 models, 12 months 3) COLA-RSMAS-CCSM3, National Center for Atmospheric Research, 6 models, 12 months 4) COLA-RSMAS-CCSM34, National Center for Atmospheric Research, 10 models, 12 months 5) GFDL-CM2p1-aer04, NOAA Geophysical Fluid Dynamics Laboratory, 10 models, 12 months 6) GFDL-CM2p5-FLOR-A06, NOAA Geophysical Fluid Dynamics Laboratory, 12 models, 12 months 7) GFDL-CM2p5-FLOR-B01, NOAA Geophysical Fluid Dynamics Laboratory, 12 models, 12 months 8) NASA-GMAO-062012, NASA Global Modeling and Assimilation Office, 12 models, 9 months 9) NCEP-CFSv2, NOAA National Centers for Environmental Prediction, 24/28 models, 10 months With the exception of the CFSv2 model (which includes only precipitation and average temperature), the variables of other models include precipitation, average temperature, maximum temperature, and minimum temperature. Each model ensemble member stores one NC file every month for each variable. The meteorological elements, variable names, units, and physical meanings of each variable are as follows: 1) Average temperature, tref, K, monthly average near-surface (2-m) average air temperature 2) Maximum temperature, tmax, K, monthly average near-surface (2-m) maximum air temperature 3) Minimum temperature, tmin, K, monthly average near-surface (2-m) minimum air temperature 4) Precipitation, prec, mm/day, monthly average precipitation. The dataset has been widely applied in climate forecasting, hydrological forecasting, and quantitatively estimating model forecasting uncertainty.
0 2020-06-03
The data set recorded the total investment in fixed assets in Qinghai from 1980 to 2016. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The table contains 11 fields. Field 1: Year Interpretation: Year of the data Field 2: Total Interpretation: Total investment in fixed assets Unit: 100,000,000 yuan Field 3: State-owned economy Interpretation: State-owned economic investment in fixed assets Unit: 100,000,000 yuan Field 4: Collective Economy Interpretation: Collective economic investment in fixed assets Unit: 100,000,000 yuan Field 5: Individual Economy Interpretation: Individual economic investment in fixed assets Unit: 100,000,000 yuan Field 6: Other types of economy Interpretation: Other economic investment in fixed assets Unit: 100,000,000 yuan Field 7: Total Growth Interpretation: Total growth of investment in fixed assets Unit: % Field 8: State-owned growth Interpretation: Growth of state-owned economic investment in fixed assets Unit: % Field 9: Collective growth Interpretation: Growth of collective economic investment in fixed assets Unit: % Field 10: Individual Growth Interpretation: Growth of individual economic investment in fixed assets Unit: % Field 11: Other growth Interpretation: Growth of other economic investment in fixed assets Unit: %
0 2019-09-12
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn