The dataset of airborne LiDAR mission in the Zhangye-Yingke flight zone on Jun. 20, 2008 included peak pulse data, full waveform data, CCD photos, DEM, DSM and DOM. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 2 || 38°57′53.06″ || 100°27′22.19″ || 38°50′31.77″ || 100°22′48.36″ || 2150 || 15.1 || 40 |- | 3 || 38°57′49.52″ || 100°27′31.54″ || 38°50′28.23″ || 100°22′57.69″ || 2150 || 15.1 || 40 |- | 4 || 38°57′45.98″ || 100°27′40.88″ || 38°50′24.70″ || 100°23′07.00″ || 2150 || 15.1 || 80 |- | 5 || 38°57′42.44″ || 100°27′50.22″ || 38°50′21.16″ || 100°23′16.35″ || 2150 || 15.1 || 80 |- | 6 || 38°57′38.90″ || 100°27′59.57″ || 38°50′17.63″ || 100°23′25.68″ || 2150 || 15.1 || 79 |- | 7 || 38°57′35.36″ || 100°28′08.91″ || 38°50′14.09″ || 100°23′35.01″ || 2150 || 15.1 || 81 |- | 8 || 38°57′31.81″ || 100°28′18.25″ || 38°50′10.55″ || 100°23′44.34″ || 2150 || 15.1 || 80 |- | 9 || 38°57′28.27″ || 100°28′27.59″ || 38°50′07.01″ || 100°23′53.67″ || 2150 || 15.1 || 81 |- | 10 || 38°57′24.73″ || 100°28′36.94″ || 38°50′03.48″ || 100°24′03.00″ || 2150 || 15.1 || 80 |- | 11 || 38°57′21.19″ || 100°28′46.28″ || 38°49′59.95″ || 100°24′12.33″ || 2150 || 15.1 || 82 |- | 12 || 38°57′17.64″ || 100°28′55.62″ || 38°49′56.41″ || 100°24′21.66″ || 2150 || 15.1 || 80 |- | 13 || 38°57′14.10″ || 100°29′04.96″ || 38°49′52.87″ || 100°24′30.99″ || 2150 || 15.1 || 81 |- | 14 || 38°57′10.56″ || 100°29′14.30″ || 38°49′49.34″ || 100°24′40.32″ || 2150 || 15.1 || 79 |- | 15 || 38°57′07.01″ || 100°29′23.64″ || 38°49′45.80″ || 100°24′49.65″ || 2150 || 15.1 || 80 |}
0 2019-05-23
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
0 2019-05-23
This data set includes the daily average data of air temperature, relative humidity, precipitation, wind speed, wind direction, net radiation, air pressure, etc. of Southeast Tibet station from January 1, 2017 to December 31, 2018.
0 2019-11-22
Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.
0 2020-03-28
The dataset of the ground-based microwave radiometers and ground truth observations (multi-frequency, multi-polar multi-angle) for soil freeze/thaw cycle in the A'rou foci experimental area from Oct. 19 to 25, 2007, during the pre-observation period, X-band from Oct. 20 to 25, S-band from Oct. 20 to 25, K-band from Oct. 19 to 24, and Ka-band from Oct. 20 to 24, to be specific. The aims of the measurements were the effects of the soil freeze/thaw status on the microwave brightness temperatures. Those provide reliable ground data for improving and verifying microwave radiative transfer models and parameters retrieval of soil freeze/thaw status. Time-continuous ground observations synchronizing with the ground-based microwave radiometers including self-recording and manual measurements, were carried out in No. 1 quadrate of A'rou with dry natural grassland as the landscape. (1) self-recording observations: the soil temperatures at 0cm, 5cm, 10cm, 15cm and 20cm by the temperature probe from Oct. 21 to 25, 2007, and shallow layer soil moisture at 0-5cm, 5cm, 10cm, 15cm and 20cm by TDR from Oct. 19 to 21 2007. Both time interval of the observations were 5 minutes. (2) manual observations: the surface radiative temperature by the handheld infrared thermometer, the soil temperature at 0cm, 5cm, 10cm, 15cm and 20cm by the glass geothermometer, and the mean soil temperature from 0-5cm by the probe thermometer. The time interval of observations was 30 minutes from Oct. 19-21, 2007.
0 2019-05-23
This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during February 7 to 11, 2018 were missing due to the power loss. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
0 2020-07-25
Used in environment and mitigation of small satellite constellation 30 m image of CCD sensor, after scaling, geometric correction and based on the Angle of the top of the atmosphere apparent reflectance grid regression (presents Bin) inversion algorithm inversion of surface shortwave albedo, choose the image Mosaic of cloud cover at least a month again become full of heihe river basin albedo distribution, projection method for UTM projection, the spatial resolution of 30 meters, time and frequency of 1 per month.The data file contains two bands, namely the black-sky albedo of local noon and the white-sky albedo corresponding to the solar Angle at the local noon, which are stored in the form of a short integer with a scaling factor of 0.0001.
0 2020-03-07
The NDVI data set is the latest release of the long sequence (1981-2015) normalized difference vegetation index product of NOAA Global Inventory Monitoring and Modeling System (GIMMS), version number 3g.v1. The temporal resolution of the product is twice a month, while the spatial resolution is 1/12 of a degree. The temporal coverage is from July 1981 to December 2015. This product is a shared data product and can be downloaded directly from ecocast.arc.nasa.gov. For details, please refer to https://nex.nasa.gov/nex/projects/1349/.
0 2020-09-30
On 1 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the upper reaches of the Heihe River Basin. WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
0 2019-09-13
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.4 in the flux observation matrix. There were two types of LASs at site No.4: German BLS450 and China zzlas. The observation periods were from 2 June to 22 September, 2012 and 11 June to 20 September, 2012, for the BLS450 and the zzlas, respectively. The north tower is placed with the receiver of BLS450 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS450 and the receiver of zzlas. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 1854 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>1.01E-13). (2) Data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000, zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
0 2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn