Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".
0 2020-06-23
This data set includes the information of 21 conventional meteorological observation stations in Heihe River Basin and its surrounding areas, of which Wutonggou and Quixote stations have been cancelled in the 1980s, and other stations have operated since the establishment of the station. Station name, longitude and latitude 1. Mazong mountain 97.1097 41.5104 2. Yumen town 97.5530 39.8364 3. Wutonggou 98.3248 40.4697 4. Jiuquan 98.4975 39.7036 5. Jinta 98.9058 39.9988 6. Dingxin 99.5117 40.3080 7. Gaotai 99.7907 39.3623 8. Linze 100.165 39.1385 9. Sunan 99.6178 38.8399 10. Yeniugou 99.5830 38.4167 11. Tole 98.0147 39.0327 12. Ejina Banner 101.088 41.9351 13. Guaizi Lake 102.283 41.3662 14. Zhangye 100.460 38.9124 15. Shandan 101.083 38.7746 16. Folk music 100.826 38.4376 17. Alxa Right Banner 101.429 39.1407 18. Yongchang 101.578 38.1771 19. Qilian 100.238 38.1929 20. Gangcha 100.111 37.2478 21. Menyuan 101.379 37.2513 22. Gekkot 99.7063 41.9183 23. Jiayuguan 98.2241 39.7975
0 2020-06-05
Data of four hydrogeological boreholes constructed in the badain jaran desert area of alxa right banner in 2013 are provided, including borehole construction reports, borehole location plans and borehole profiles.Adopt the core of quaternary and bedrock, install the filter tube at the bottom of the well, wash the well. Quantity of work: 4 boreholes with Numbers of K1, K2, K3 and K4.The total footage is designed according to 240 m, with an average single hole depth of 60 m. The actual depth control standard is the exposure of bedrock.
0 2020-03-10
Five different altitude zones were selected for this test. Their altitude, latitude and longitude are 3650 meters above sea level, latitude and longitude 99°55'24 E, 38°24'60" N; altitude of 3550 meters, latitude and longitude 99°55'28 E, 38°25'11" N; 3450 meters above sea level, longitude and latitude 99°55'38 E, 38°25'68" N; 3350 meters above sea level, longitude and latitude 99°55'37 E, 38°25'11" N; 3050 meters above sea level, longitude and latitude 99°55'42 E, 38°25'54" N. From May 31 to August 31, 2011, in the case of natural rainfall, the total rainfall was measured once every ten days using a rain gauge on five samples. To compare the difference in rainfall at different altitudes, it is necessary to combine the rainfall data observed by the project at the grassland weather station in 2011.
0 2020-03-06
From the beginning of June to the beginning of August, 2011, permafrost investigation was carried out in the West Branch of the headwater of Heihe River. Along the section between hot water dabanya and Shimian mine fork of erga highway, with the decrease of altitude, 7 thermowells T1, T2, T3, T4, T7, T5 and T6 were successively arranged, and thermotubes were arranged for ground temperature monitoring. The instrument used is a thermistor thermometer developed by the State Key Laboratory of Permafrost Engineering, Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences. The resistance value is measured by fluke multimeter, and then converted into temperature value with accuracy of ± 0.05 ° C. In order to reduce the impact of the road on the drilling temperature, it is required that the vertical distance between all the drilling holes and the road shall be at least greater than 100 m when determining the hole location. Except that T1 temperature hole of hot water Daban pass is located in the south of erga highway, the other six holes are located in the north of the highway.
0 2020-09-15
The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.
0 2020-06-07
Soil evaporation in forest land is a process in which water in soil enters the atmosphere from the soil surface through rising and vaporizing. Soil evaporation affects the change of soil water content, which is an important part of hydrological cycle. The data were observed by the mini lysmeter evaporation tube, which was designed to provide data support for the study of water vertical exchange rule of Picea crassifolia forest.
0 2020-03-10
The dataset of eddy covariance observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Dec. 27, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the spruce 15-20m high and the surface was covered by moss 10cm deep. All the vegetation was in good condition. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount-height was 20.02m, the ultrasound direction was at an azimuth angle of 74°, the distance between Li7500 and CSAT3 was 30cm and sampling frequency was 10HZ. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
0 2019-05-23
Desertification is a kind of land degradation with aeolian sands as the main symbol caused by the uncoordinated human-land relationship in arid, semi-arid and some semi-humid regions of northern China. Data source: edited by the China Institute of Glacial and Frozen Desert and coordinated by the Institute of Geography of the Chinese Academy of Sciences. Based on aerial photographs from the 1970s and field research, a 1: 2 million desert map was drawn. Mapping of the 14 million "Map of the People's Republic of China" published in 1971. First, the data set content 1.Desert_Ch_2009 (desert distribution) 2.Dune_hight_Ch_200 (dune height) 3.Gobi_Ch_200 (Gobi) 4.Wind_eroded_land_Ch_200 (wind erosion data) The fields of the desertification attribute table are as follows: (1) Semifixed (semi-fixed dunes): undulating sandy land (2-1), thicket dunes (2-2), parabolic dunes (2-3), beam nest dunes (2-4), sand ridges And dendritic sand ridge (2-5), honeycomb sand dune (2-6), honeycomb sand ridge (2-7), composite sand ridge (2-8) (2) Fixation (fixed dune): flat sandy land (3-1), grassland bush (3-2), sand ridge (3-3), honeycomb sand dune (3-4) (3) Migratory: Crescent sand dunes and dune chains (1-1), Crescent sand ridges and dunes (1-2), Lattice dunes and Lattice dune chains (1-3), Fish scales Sand dunes (1-4), feathery dunes (1-5), pyramid dunes (1-6), composite dunes and dune chains (1-7), composite dunes (1-8), composite Dome-shaped dunes (1-9), chain-shaped sand hills (sand dunes) (1-10), stacked chain-shaped sand hills (1-11), compound ridge-shaped sand hills (1-12), composite chain-shaped Sand Mountain (1-13), Pyramid Sand Mountain (1-14) (4) class_id: encoding of desertification attributes Projection information PROJCS ["Albers", GEOGCS ["GCS_Beijing_1954", DATUM ["Beijing_1954", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]]
0 2020-04-07
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the daily surface evapotranspiration of the heihe river basin at 1km from 2009 to 2011.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.Using daily data storage, data format for GEOTIFF, naming: yyyyddd_EvapoTranspiration. tif, including yyyy for years, DDD for ordinal.The data type is single-precision floating point in mm/d and the invalid value is -9.
0 2020-03-05
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn