This data set contains the observation data of vorticity correlation-meter at da-sharon station, upstream of heihe hydrometeorological observation network, from January 1, 2014 to December 31, 2014.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406e, 38.8399N and 3739 m above sea level.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.After October 20, 10Hz data was missing due to the data storage problem of the memory card, which was replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
Input and output table of Heihe River Basin in Gansu Province in 2002 and 2007, including 144 departments
0 2020-07-28
The dataset of airborne microwave radiometers (L&K) mission was obtained in the A'rou-Biandukou flight zone on Mar. 19, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired; and the frequency of K band was 18.7 GHz at the nadir view angle without polarization. The plane took off at Zhangye airport at 9:25 (BJT) and landed at 12:50 along the scheduled lines at the altitude about 4100m and speed about 260km/hr. The raw data include microwave radiometer (L&K bands) data and GPS data; the former are instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together), and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L&K bands resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height) for L band and x=0.24H for K band.
0 2019-05-23
This data is digitized from the "Tianshui Land Use Status Map" of the drawing. This map is a key scientific and technological research project of the "Seventh Five-Year Plan" of the country: "Three North" Shelterbelt Remote Sensing Comprehensive Survey, one of the series maps of Ganqingning Type Area. The information is as follows: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Manuscript: Mou Xin-shi, Cui Sai-hua, Wang Xian. He Shouhua * Compiling: He Shouhua, Wang Xian, Quan Zhijie, Cui Saihua, Long Yaping, Mu Xinshi, He Shouhua, Mao Xiaoli, Cui Saihua, Wang Changhan * Editors: Feng Yushun and Wang Yimou * Qing Hua: Feng Yushun, Zhang Jingqiu, Yang Ping * Cartography: Feng Yushun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Tianshui landuse map (landuse), River, Road, point-like residential land and area-like residential land 3. Data Fields and Attributes Type number land resource class Land_type 88 Exposedrock 86 bare soil Bareground 85 sandy beach and dry ditch Sandy flat and dryvally 446 Artemisia ordosica, miscellaneous grass G1. Artemisia subdingata mixed herbs 445 fern, miscellaneous grass G1. pterideumaquilumvar. latiusculummixedherbs444 Polygonum viviparum, grass G1. G1.Polygonumriciparum,grasses 443 Huang Qiangwei, Spiraea shrub miscellaneous grass G1. Rosa Hugo NIS, Spiraea Canes Cens Scrub Mixed Weeds 442 honeysuckle, elaeagnus pungens shrub miscellaneous grass g1.lonicera japonica eluegas pungens shurb mixed herbs 441 Tiger Hazelnut, Shrub Miscellaneous Grass G1. Ostryopsis Daridiana Scrub Mixed Herbs ............. Please refer to the data document for details. 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
0 2020-06-11
This set of data is the simulation result of the newly developed land eco-hydrological model CLM_LTF.This model is on top of the land-surface process model CLM4.5 developed by NCAR, coupling the groundwater lateral flow module and considering the role of human irrigation. The model runs from 1981 to 2013, with a spatial resolution of 30 arc seconds (0.0083 degrees), a time step of 1,800 seconds, and a simulation range of the heihe river basin.Air force in 1981-2012 is used by the Chinese academy of sciences institute of the qinghai-tibet plateau of qinghai-tibet plateau more layers of data assimilation and simulation center development areas of China high space-time resolution ground meteorological elements drive data set, air is forced to use 2013 national meteorological information center of wind pressure high resolution made by the wet precipitation temperature radiation data set.The land cover data is a 1km land cover grid data set for the MICLCover heihe river basin, and the irrigation data is shown in "monthly 30-arcsecond resolution surface water and groundwater irrigation data set for the heihe river basin 1981-2013" of the scientific data center for cold and dry regions.The mode output is the monthly average. The document is described as follows: Groundwater depth data: heihe_zwt.nc 2cm soil moisture data: heihe_h2osoi_2cm. nc 100cm soil moisture data: heihe_h2osoi_100cm.nc Evaporation data: Heihe_evaptanspiration. Nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information. The data is stored in the data variable. The underground water depth data is in m, the soil moisture data is in m^3/m^3, and the evapotranspiration data is in mm/month
0 2020-08-10
In the growing season of 2012, four typical shrub communities observed precipitation stem stream and penetrating rainfall during the experiment period.Data content: test date;Stem flow rate;Penetration rainfall, interception. Method of observation: water penetration was measured using a circular iron vessel with a diameter of 15 cm and a height of 10 cm.Since jinrumei, seabuckthorn and jinjijicinus shrub could not be observed on a single plant, after the canopy canopy density of the sample plots was determined, 9 water receivers were placed in each sample plot, so that there were water receivers under different canopy closures.This method of observing rain penetration allows for better collection of rain penetration from different parts of the underbrush.Due to the difficulty of observation and the lack of herbaceous vegetation, the interception of herbaceous under shrub was neglected.Takashima is centered on the stem, which is near the stem. One is placed at the edge of the crown and one at the middle of the crown and spoke. The Angle between each 3 containers is 120°.Six of each shrub were selected for stem flow observation.A single shrub was measured on the lower stems of all branches, and the stem flow of the trunk of the cluster shrub was measured by standard branch method, that is, the basal diameter of each branch of the selected shrub was measured.Under brush all branch stem, the use of polyethylene plastic hose cut open, card on the thickets stems directly, with a plastic adhesive tape and glass, the plastic tube directly connected to the trunk stem flow collection bottle, bottle thickness and plastic pipe, avoid rain and penetrate the rain into the collection bottle, before use after artificial experiments can precisely collect trunk stem flow.In order to reduce the error caused by evaporation in the measurement process, the penetrating rainfall and the flow of the trunk and stem were measured in time after the rain, such as the rain at night, and the samples were taken early in the morning on the second day. Data processing: the penetration rainfall is multiplied by 1.78 (conversion coefficient of different diameters of 20 cm and 15 cm) and replaced by the corresponding penetration rainfall (mm) at standard 20 cm.The measured water volume of each trunk flow collection bottle was divided by the projection area of the standard branch to obtain the trunk flow rate of the branch. The trunk flow rate of the standard branch was multiplied by the number of branches of the whole shrub to obtain the trunk flow rate of the whole shrub.According to the principle of water balance, the redistribution process of rainfall by shrub can be divided into three parts: interception, trunk flow and penetrating rainfall: IC = P - SF - TF Where, P is the rainfall outside the forest;TF is the penetrating rainfall;SF is the flow rate of the trunk.IC is the interception amount of the irrigation layer.According to the measured data of the stem flow through the rain trunk, the interception was obtained by using the above equation.
0 2020-03-10
In order to understand the temporal and spatial variation characteristics of temperature changes in the Northern Hemisphere, the study used CRU (Climatic Research Unit) grid data to calculate the spatial distribution of the average annual temperature of 30 years (1971-2000). The annual average temperature decreases with the latitude increasing, and varies from greater than 30 °C to less than -25 °C. In the regions of the same latitudes, the annual average temperature in high altitude areas (such as the Tibetan Plateau, the Mongolian Plateau, and the Western Siberian Mountains) presented the trend of low temperature. At the same time, the annual average temperature trend distribution map of the Northern Hemisphere with a resolution of 0.5 ° × 0.5 ° from 1901 to 2016 was completed.
0 2019-09-13
The site No. 1 EC towers were used for the intercomparison field in the Yingke irrigation district (1552.75 m, 38°59′51.71″ N, 100°24′38.76″ E). The land surface is homogeneous and dominated by vegetables in the middle reaches of the Heihe River Basin. The precipitation comparison dataset was collected between 12 June, 2012, and 22 November, 2012. The dataset includes data for five different rain gauge types, i.e., pit gauge, Chinese standard manual precipitation gauge, siphon rain gauge, tipping bucket gauge, and weighting gauge. The mountain heights for these gauges were 0.0, 0.7, 1.2, 1.5, and 1.5 m, respectively. The data were recorded every 1 hour, 1 day, 10 minutes, 10 minutes, and 10 minutes, respectively. The main objective of the data collection was to perform an intercomparison of in situ rainfall measurements. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.
0 2019-09-15
The content is 32 rainfall interception data of Picea crassifolia forest from May 24 to September 3, 2013. The sample plot is set in Qinghai Spruce Forest with an altitude of 2800m, the sample plot size is 30m × 30m, 90 rain cones with a diameter of 20cm are arranged in the sample plot with an interval of 3M, and 20 water tanks with two specifications (I is 200cm * 20cm, II is 400cm * 20cm) are arranged to observe the interception data in the forest. A dsj2 (Tianjin Meteorological Instrument Factory) siphon rain gauge was set up in the open land about 50m away from the sample site to observe the rainfall and rainfall characteristics outside the forest. After the end of each precipitation event and the stop of penetrating rain in the forest, measure and record the water quantity in each rain cone with a rain gauge.
0 2020-03-10
The scanned picture of the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Shi Yafeng, Meidesheng, 1988) is geometrically corrected and then digitized in the data set, and by taking altitude and latitude into account in combination with the continuity of permafrost, the frozen soil is divided into the predominant permafrost of high-latitude permafrost, island talik permafrost and island permafrost; high-altitude permafrost and mountain permafrost (including Altai, Tianshan Mountain, Qilian Mountain, Hengduan, the Himalayas and Taibai Mountain in East China, Huanggangliang and Changbai Mountain), and the plateau permafrost (the Tibetan Plateau), which is divided into predominant permafrost and island permafrost; and seasonal frozen soil, instantaneous frozen soil and nonfrozen areas.
0 2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn