"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The snow day map of Heihe River Basin is one of the hydrological and water resources in the atlas, with the scale of 1:2500000, the positive axis and equal volume conic projection, and the standard latitude of 25 47 n. Data source: this map shows the distribution of annual average snow days in 10 hydrological years in the whole Heihe River Basin from August 1, 2001 to July 31, 2011. The original data comes from MODIS daily snow products modisa 1 and myd10a1 provided by the National Snow and Ice Data Center (NSIDC) of the United States, as well as the long-term series snow depth data set of China provided by the scientific data center for cold and dry regions (WESTDC).
0 2020-03-05
The dataset of airborne WiDAS mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jun. 29, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 3#15 || 1500m || 10:54:47 || 11:10:55 || 123 || processed; complete || good |- | 2 || 3#13 || 1500m || 11:15:39 || 11:15:11 || 114 || processed; complete || good |- | 3 || 3#10 || 1500m || 13:55:47 || 14:11:27 || 116 || processed; complete || good || the resort, Yingke weather station maize field and Yingke wheat field |- | 4 || 3#9 || 1500m || 14:08:35 || 14:16:11 || 115 || processed; complete || good || the wetland park,Zhangye city,Yingke weather station maize field, Yingke wheat field, and Huazhaizi desert maize field |- | 5 || 3#7 || 1500m || 14:22:07 || 14:29:47 || 116 || processed; complete || good |- | 6 || 3#5 || 1500m || 14:34:15 || 14:41:43 || 113 || processed; complete || good || Huazhaizi desert plot 1 |- | 7 || 3#3 || 1500m || 14:47:11 || 14:54:47 || 115 || processed; complete || good || Huazhaizi desert plot 2 |- | 8 || 3#1 || 1500m || 14:57:51 || 15:13:03 || 109 || processed; complete || good |}
0 2019-05-23
These data are a digitization of the frozen soil distribution map of the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000). Considering the unification with the global frozen soil classification system, the permafrost is divided into the following five types: (1) Discontinuous permafrost: continuous coefficient 50%-90% (2) Island permafrost: continuous coefficient <50% (3) Plateau discontinuous permafrost: continuous coefficient 50%-90% (4) Plateau island permafrost: continuous coefficient 50%-90% (5) Mountain permafrost The compilation basis of the frozen soil map includes (1) the measured field survey data and exploration of frozen soil; (2) aerial image and satellite image interpretation; (3) TOPO30 1-km resolution ground elevation data; and (4) and temperature and ground temperature data. The distribution of frozen soil on the Tibetan Plateau adopted the research results of Zhuotong Nan et al. (2002). Using the average annual temperature data of 76 boreholes along the Qinghai-Tibet Highway, a statistical regression analysis was performed to obtain the relation between annual mean ground temperature, latitude and elevation. Based on the relation combined with GTOPO30 elevation data (global 1-km digital elevation model data developed by the Earth Resources Observation and Technology Center of the U.S Geological Survey), the annual average ground temperature distribution over the entire Tibetan Plateau was simulated. Taking the annual average ground temperature of 0.5 °C as the boundary between permafrost and seasonal frozen soil and the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988) as a reference, the boundary between the plateau discontinuous permafrost and plateau island permafrost was determined. In addition, taking the Distributions Map of Permafrost in Daxiao Hinganling Northeast China (Dongxin Guo, et al. 1981), the Distribution Map of Permafrost and Ground Ice in Circum-Arctic (Brown et al. 1997) and the latest field data as references, the permafrost boundary of northeast China has been revised; the mountain permafrost boundary in the northwest mostly adopted the boundary delineated in the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988). According to this data set, permafrost area in China is approximately 1.75×106 km2, accounting for 18.25% of the territory of China, among which the mountain permafrost area is 0.29×106 km2, which accounts for 3.03% of the territory of China. For more information, please refer to the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000) specification (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006).
0 2020-01-11
This is the LAINet dataset measured in the corn field at the Xiaoman irrigation district (from 25 June, to 24 August, 2012). The time used in this dataset is in UTC+8 Time. Instrument: LAINet- A wireless sensor network for leaf area index measurement, Beijing Normal University Measurement Mode: LAINet observation system is formed by 3 kinds of sensor nodes, they are respectively (1) node below the canopy, sensors up-looking are used for measure the transmitted radiation through the canopy, which are deployed horizontally; (2) node above canopy: sensors up-looking are used for measure the total sun incident radiation, which are deployed horizontally; (3) sink or router node, which is designed for receiving and transmitting data measured by the above node and below node. Data Processing: the original data obtained from sensors is received by sink nodes, and forms the original dataset in days after pre-processed. The observation for transmittance of the canopy is acquired by calculating the ratio of the radiation through the canopy and the total incident radiation above the canopy at different sun elevation angles during a day. The retrieval of LAI is based on the multi-angle transmittance data. LAINet dataset is composed of original LAI data, LAI data after calculating the mean value in 5 days interval and the longitude and latitude of the measurement nodes. All the data are stored in the format of Excel. As for the data after calculating the mean value in 5 days, we take the number of aggregation nodes as the name of the sheet. Data saved in a sheet is from an sink node which receives the measurement data from the child nodes. The original data records the LAI of every node in the observation day. In the sheet of two kinds of data above, the meaning of the column is as follows: DOY, node one, node two, …, and node N.
0 2019-09-13
1) The data set is composed of global atmospheric reanalysis data jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). These grid data are generated by reanalysing the global meteorological data from 1948 to present by applying observation data, forecasting models and assimilation systems. The data variables include surface, near-surface (.995 sigma layer) and multiple meteorological variables in different barospheres, such as precipitation, temperature, relative humidity, sea level pressure, geopotential height, wind field, heat flux, etc. 2) The coverage time is from 1948 to 2018, and the data from 1948 to 1957 are non-Gaussian grid data. The data cover the whole world. The spatial resolution is a 2.5° latitude by 2.5° longitude grid. The vertical resolution is a 17-layer standard pressure barosphere, with layer boundaries at 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa, and 28 sigma levels. Some variables are calculated for 8 layers (omega) or 12 layers (humidity), with temporal resolutions of 6 hours, daily, monthly or a long-term monthly average (from 1981 to 2010). The daily data are obtained by averaging the daily values of 0Z, 6Z, 12Z and 18Z. 3) Missing values are assigned a value of -9.99691e+36f. The data are stored in the .nc format with the file name var.time.stat.nc, and each file includes data on latitude, longitude, time, and atmospheric variables. For detailed data specifications, please visit http://www.esrl.noaa.gov/pad/data.
0 2020-09-14
In east Asia, institute of atmospheric physics, Chinese Academy of Sciences key laboratory of regional climate and environment development of regional integration environment with independent copyright system model RIEMS 2.0, on the basis of the regional climate model RIEMS 2.0 in the United States center for atmospheric research and the development of the university of binzhou mesoscale model (MM5) is a static dynamic framework, coupled with some physical processes needed for the study climate solutions.These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, USES the heihe river basin vegetation data list data of land use in 2000 and 30 SEC DEM data in heihe river basin, build up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Drive field: ERA-INTERIM reanalysis data Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 2011 to December 31, 2016, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) college usurf for short 2) Anemometer south wind(m/s), vsurf for short College 3) Anemometer temperature (deg) K tsurf College 4) maximal temperature (deg) K tmax 5) minimal temperature (deg K) abbreviated as tmin 6) college Anemom specific humidity (g/kg) college qsurf for short 7) value (mm/hr) is simply value p College 8) Accumulated evaporation (mm/hr) evap 9) sensible heat (watts/m**2/hr) for short College 10) Accumulated net infrared radiation (watts/m * * 2 / hr) netrad for short College definition file name: -erain-xiong. Month and year
0 2020-03-11
Reservoir refers to the artificial water area formed in valley, river or low-lying area by dam, dike, sluice, weir and other projects. It is the main measure used for runoff regulation to change the distribution process of natural water resources and plays an important role in social and economic development. Many reservoirs have been built in Heihe River Basin, which has an important impact on the utilization of water resources in this area. In order to facilitate the mapping needs of users, we use topographic map and remote sensing image to prepare the reservoir distribution map of the Heihe River Basin. The location and shape of the reservoir are mainly obtained by manual interpretation based on Google map image, which basically shows the current situation of the reservoir distribution in the Heihe River Basin around 2010.
0 2020-10-12
The data set provided the cloudless Fractional Snow Cover area (FSC) time-series product basing on the MODIS data and covered the Heihe River Basin from January 2010 to December 2013. They also provide the high spatial (500 m) and temporal (1 day) resolution. Firstly, the end-member were automatically extracted by the fast autonomous spectral end-member determination (N-FINDR) maximizing volume iteration algorithm. Combining N-FINDR with the orthogonal subspace projection (OSP) approach, we propose an improved end-member extraction algorithm using a maximizing, volume-based iterative method. All the 6 end-members were extracted including snow, soil, water, bare land, vegetation, and cloud, respectively. Then, the 10-day spectral library time series based on prior knowledge of Heihe basin are built for 2009. The primary data were produced using the fully constrained least squares (FCLS) linear spectral mixture analysis method by the spectral library. Finally,the cubic spline interpolation algorithm were used to the eliminate the cloud pixels completely and obtain the data set. The data are validated by the fractional snow cover derived from Landsat imagery and the results indicate that the improved algorithm can obtain the end-member information accurately, and the retrieved fractional snow cover has better accuracy than the MODIS fractional snow-cover product (MOD10A1). So the data set can provide more accurate input for the hydrology and climate model.
0 2019-09-12
This data set includes the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, etc. observed at Namuco station from January 1, 2017 to December 31, 2018.
0 2019-11-21
This data set is based on China's second inventory data, Landsat series optical image data with a spatial resolution of 30 meters and cloud coverage of less than 10% and SRTM and other data using ArcGIS, ENVI, Google Earth and other processing software and extracting the glacial lake boundary within 10 km of the glacier boundary by artificial visual interpretation. In addition, the data set adds attributes such as glacial lake type, the mountain range, the province, and the basin to the data as well as quality checking and accuracy verification for the interpreted data. The spatial resolution is 30 meters. It consists of two parts: the glacial lake distribution area vector file and the Inventory Data set of glacial lakes in west China in 2015. It can provide reference data for glacial lake-glacier coupling, water resource utilization and management in west China and can also be used as basic data for regional climate change and cryospheric studies.
0 2019-09-15
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn