The data set is the HWSD soil texture dataset of the Shulehe River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, 2009. The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.
0 2020-06-08
The data includes earthquakes at various levels across the country from 2300 BC to 2005 AD. There are a total of more than 330,000 catalogs, each of which includes earthquake time, epicenter longitude, epicenter latitude, focal depth, positioning accuracy, and magnitude. This data was first released by the National Seismological Bureau. The China Earthquake Catalog contains a Mapinfo layer (Total_0510Time) and files with the extensions .TAB, .MAP, .DAT, .ID. Their functions are as follows: TAB: the main file, including the table data structure and entity data format fields; MAP: a geographic data file containing map objects; ID: the index file of the graphic object file (MAP); DAT: Form data file.
0 2020-03-28
The data set is from February 24, 2000 to December 31, 2004, with a resolution of 0.05 degrees, MODIS data, and the data format is .hdf. It can be opened with HDFView. The data quality is good. The missing dates are as follows: 2000 1 -54 132 219-230 303 2001 111 167-182 2002 079-086 099 105 2003 123 324 351-358 2004 219 349 The number after the year is the nth day of the year Pixel values are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill An example of file naming is as follows: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS / Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour / minute / second of production in GMT (15:24:31) The corner coordinates are: Corner Coordinates: Upper Left (70.0000000, 54.0000000) Lower Left (70.0000000, 3.0000000) Upper Right (138.0000000, 54.0000000) Lower Right (138.0000000, 3.0000000) Among them, Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner. The number of data rows and columns is 1360, 1020 Geographical latitude and longitude coordinates, the specific information is as follows: Coordinate System is: GEOGCS ["Unknown datum based upon the Clarke 1866 ellipsoid", DATUM ["Not specified (based on Clarke 1866 spheroid)", SPHEROID ["Clarke 1866", 6378206.4,294.9786982139006, AUTHORITY ["EPSG", "7008"]]], PRIMEM ["Greenwich", 0], UNIT ["degree", 0.0174532925199433]] Origin = (70.000000000000000, 54.000000000000000)
0 2020-10-12
This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000
0 2020-06-09
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
0 2019-09-12
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 19 to 20, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 19-20, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls
0 2020-03-13
The data set contains the location information and soil systematic type data of typical soil samples from the Heihe River Basin from July 2012 to August 2014. The typical soil sample collection method in the Heihe River Basin is representative sampling, which refers to the typical soil types that can be collected in the landscape area, and collects highly representative samples as much as possible. According to the Chinese soil systematic classification, the soil type of each section is divided based on the diagnostic layer and diagnostic characteristics. The sample points are divided into 8 soil orders: organic soil, anthropogenic soil, Aridisol, halomorphic soil, Gleysol, isohumicsoill , Cambisol, Entisol, and 39 sub-categories.
0 2020-07-30
The population data of Zhangye City from 2001 to 2012 include: annual population density and natural population growth rate, Data source: Statistical Bureau of Zhangye City. Statistical yearbook of Zhangye City. 2001-2012, Department of water resources of Gansu Province. Bulletin of water resources of Gansu Province. 2001-2012. Water Affairs Bureau of Zhangye City. Comprehensive annual report of water resources of Zhangye City, 1999-2011
0 2020-07-28
According to the sample survey data, in August 2013, 30 forest plots were set up in the Tianlaochi watershed, with a plot size of 10 m×20 m. The long side of the plot was parallel to the slope of the hillside, including 26 blocks of Picea crassifolia forest. 2 blocks of Sabina Przewalsskii forest and 2 mixed forests of Picea and Sabina. In the plot, the diameter of the breast of each tree (the diameter of the trunk at a height of 1.3 m) is measured by a diameter tape, and the height of each tree and the height under the branches (the height of the first live branch at the lower end of the canopy) is measured by a hand-held ultrasonic altimeter. The north-south direction and the east-west crown width are measured with a tape measure, and the sample site is positioned by differential GPS. The parallel version of HASM-AD algorithm is used to simulate the classified LIDAR point cloud data. DEM is generated from ground points, DSM is generated from all points, and the height of surface features is obtained by differential operation between DSM and DEM. In forest area, it is called Canopy Height Model (CHM). A circular window with a given search radius is used to find the local maximum value on CHM. If the central pixel value is the maximum value, it is determined as the crown vertex. The pixel attribute value of the tree vertex is the tree height, and the spatial resolution is 1m.
0 2019-07-21
The dataset is the HWSD Soil texture data set of the qaidam basin. The data is from the Harmonized World Soil Database (HWSD) constructed by the United Nations food and agriculture organization (FAO) and Vienna institute for international applied systems (IIASA), which was released in version 1.1 on March 26, 2009.The data resolution is 1km.The main soil classification system adopted is fao-90.The main fields in the soil property list include SU_SYM90 (soil name in the FAO90 soil classification system) SU_SYM85(FAO85 classification) T_TEXTURE(top layer soil texture) (19.5);ROOTS: String(deep classification of obstacles to the bottom of the soil);SWR: String (soil moisture content characteristics);ADD_PROP: Real (specific type of soil in a soil unit related to an agricultural use);T_GRAVEL: Real (percent by volume);T_SAND: Real;T_SILT: Real (silt content);T_CLAY: Real;T_USDA_TEX: Real (USDA soil texture classification);T_REF_BULK: Real (soil bulk density);T_OC: Real (organic carbon content);T_PH_H2O: Real T_CEC_CLAY: Real;T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation);T_TEB: Real (commutative base);T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content);T_ESP: Real (exchangeable sodium);T_ECE: Real.The attribute field beginning with T_ represents the upper soil attribute (0-30cm), and the attribute field beginning with S_ represents the lower soil attribute (30-100cm) (FAO 2009).This data can provide model input parameters for earth system modelers, and agricultural perspectives can be used to study eco-agricultural zoning, food security and climate change.
0 2020-10-10
The dataset is the HWSD Soil texture data set of the qaidam basin. The data is from the Harmonized World Soil Database (HWSD) constructed by the United Nations food and agriculture organization (FAO) and Vienna institute for international applied systems (IIASA), which was released in version 1.1 on March 26, 2009.The data resolution is 1km.The main soil classification system adopted is fao-90.The main fields in the soil property list include SU_SYM90 (soil name in the FAO90 soil classification system) SU_SYM85(FAO85 classification) T_TEXTURE(top layer soil texture) (19.5);ROOTS: String(deep classification of obstacles to the bottom of the soil);SWR: String (soil moisture content characteristics);ADD_PROP: Real (specific type of soil in a soil unit related to an agricultural use);T_GRAVEL: Real (percent by volume);T_SAND: Real;T_SILT: Real (silt content);T_CLAY: Real;T_USDA_TEX: Real (USDA soil texture classification);T_REF_BULK: Real (soil bulk density);T_OC: Real (organic carbon content);T_PH_H2O: Real T_CEC_CLAY: Real;T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation);T_TEB: Real (commutative base);T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content);T_ESP: Real (exchangeable sodium);T_ECE: Real.The attribute field beginning with T_ represents the upper soil attribute (0-30cm), and the attribute field beginning with S_ represents the lower soil attribute (30-100cm) (FAO 2009).This data can provide model input parameters for earth system modelers, and agricultural perspectives can be used to study eco-agricultural zoning, food security and climate change.
0 2020-04-06
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn