• 黑河生态水文遥感试验:水文气象观测网数据集(上游阿柔超级站大孔径闪烁仪-2017)

    The data set contains the flux observation data of large aperture scintillator at areau station upstream of heihe hydrometeorological observation network.Two large aperture scintillation devices of BLS450 and zzlas type were set up in the upstream areau station respectively. The north tower was the receiving end of zzlas and the transmitting end of BLS450, and the south tower was the transmitting end of zzlas and the receiving end of BLS450.The observation time is January 1, 2017, solstice, December 31, 2017.The station is located in the grass daban village, a soft township, qilian county, qinghai province.The latitude and longitude of the north tower is 100.4712e, 38.0568n, and the latitude and longitude of the south tower is 100.4572e, 38.0384 N, with an altitude of about 3033m.The effective height of the large aperture scintillator is 9.5m, the optical diameter length is 2390m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (BLS450: Cn2 > 7.25 e-14, zzlas: Cn2 > 7.84 E - 14).(2) data with weak demodulation signal strength (BLS450: Mininum X Intensity <50) were eliminated;Zzlas: Demod>-20mv);(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, for BLS450, Thiermann and Grassl(1992) stability universal function was selected.For zzlas, select Andreas 1988's stability universal function.Please refer to Liu et al(2011, 2013) for detailed introduction.From April 16 to May 26, 2017, the measurement signal of large aperture scintillator was relatively small, resulting in a large number of missing data. Several notes on the released data :(1) the upstream LAS data is mainly BLS450, the missing time is supplemented by zzlas observation, and the missing time of both is marked by -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format, please refer to the references for details. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-03-05

  • 黑河综合遥感联合试验:中游干旱区水文试验区雨量筒加密观测数据集

    The dataset of intensive rain gauges observations was obtained in the arid region hydrology experiment area, in cooperation with dual polarized doppler radar observations. There was no single dataset for the upper stream observations for the poor quality; the middle stream dataset was collected by 29 RG3-M self-recording rain gauges: the northernmost (100.36°E, 39.16°N), the southernmost (100.34°E, 38.61°N), the easternmost (100.62°E, 38.87°N), and the westernmost (100.26°E, 38.82°N). Rain gauges R02-R09 measured from May 18 to Oct. 9, 2008, and R10-R30 from May 26 to Oct. 9, 2008. The technique criterions of these rain gauges were : (1) caliber: 165mm×254mm (2) the temperature range: 0°C —+70°C (3) resolution: 0.2mm (4) the measuring range: 0—320cm (5) the measuring accuracy: 1%

    0 2019-05-23

  • 黑河综合遥感联合试验:临泽站加密观测区ALOS PALSAR地面同步观测数据集(2008年6月27日)

    The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze station foci experimental area on Jun. 27, 2008. The data were in FBD mode and HH/HV polarization combinations, and the overpass time was approximately at 23:41 BJT. Soil moisture (0-5cm) was acquired by the cutting ring (50cm^3) meanwhile in the west-east desert strip (the corner point in 40 subplots) and north-south strip (the corner point and the center point in 40 subplots). The quadrate location was listed in coordinates.xls file and data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

    0 2019-05-23

  • 黑河生态水文遥感试验:ASTER遥感数据集

    This dataset includes 12 scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-05-30, 2012-06-15, 2012-06-24, 2012-07-10, 2012-08-02, 2012-08-11, 2012-08-18, 2012-08-27, 2012-09-03, 2012-09-12, 2012-09-19, 2012-09-28. The data were all acquired around 12:00 (BJT) at Level 1A, i.e., without atmospheric and geometric correction. ASTER dataset was purchased from Japan Aerospace Exploration Agency (JAXA).

    0 2019-09-11

  • 黑河综合遥感联合试验:临泽草地加密观测区连续地表辐射温度观测数据集

    The dataset of continuous LST (Land Surface Temperature) observation was obtained by the automatic thermometer in the Linze grassland foci experimental area. Six devices numbered from #1 to #6 were used. Observations were carried out in the reed plot A, the saline plots B and C, the alfalfa plot D, the barley plot E and the temporary farmland on Jun. 10 and 11, 2008 and in plots A, B and E on Jul. 11, 2008. Observation time and the land surface radiative temperature were archived in Word, txt and Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental of Linze station area for more information.

    0 2019-05-23

  • 黑河生态水文遥感试验:黑河流域中游核心试验区地表反照率产品(6月29日)

    The albedo product was obtained based on the visible and near-infrared hyperspectral radiometer (29 June, 2012) which covered the artificial oasis eco-hydrology experimental area (5.5 km*5.5 km)with a 5 m spatial resolution.

    0 2019-09-13

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(大满超级站下层涡动相关仪)

    This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) at the lowest layer in the flux observation matrix from 25 May to 15 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in the Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 4.5 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15

  • 陕西省1:10万土地利用数据集(2000)

    This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

    0 2020-06-10

  • 青藏高原、西伯利亚、阿拉斯加河湖区30m分辨率湖冰类型数据集(2015-2019)

    Lake ice is an important parameter of Cryosphere. Its change is closely related to climate parameters such as temperature and precipitation, and can directly reflect climate change. Therefore, lake ice is an important indicator of regional climate parameter change. However, due to the poor natural environment and sparsely populated area, it is difficult to carry out large-scale field observation, The spatial resolution of 10 m and the temporal resolution of better than 30 days were used to monitor the changes of different types of lake ice, which filled in the blank of observation. The hmrf algorithm is used to classify different types of lake ice. The distribution of different types of lake ice in some lakes with an area of more than 25km2 in the three polar regions is analyzed by time series to form the lake ice type data set. The distribution of different types of lake ice in these lakes can be obtained. The data includes the sequence number of the processed lake, the year and its serial number in the time series, and vector The data set includes the algorithm used, sentinel-1 satellite data, imaging time, polar region, lake ice type and other information. Users can determine the change of different types of lake ice in time series according to the vector file.

    0 2020-08-05

  • 黑河生态水文遥感试验:黑河流域中游机场荒漠红外温度观测数据集

    Zhanye Airport desert observation system can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large, homogeneous and flatten desert near by Zhangye Airport. The main vegetation type is Sparse and low shrub. The coordinates of this site: 38°4′41.30" N, 100°41′48.10" E. Observation Instrument: The observation system consists of two SI-111 infrared radiometers (Campbell, USA), one installed vertically downward to land surface, another face to south of zenith angle 35°. SI-111 sensor installed at 4.0 m height. Observation Time: This site operates from 10 June, 2012 to today. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface infrared temperature (by SI-111), sky infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: TarT_Atm, Sky infrared temperature @ facing south of zenith angle 35° (℃); SBT_Atm, body temperature of SI-111 sensor (℃) measured sky; TarT_Sur, land surface infrared temperature @ 4.0 m height; SBT_Sur, body temperature of SI-111 sensor (℃) measured land surface. Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.

    0 2019-09-15