• 面向陆面模拟的中国土壤数据集

    The source data of this data set are 1:1 million Chinese soil maps and 8,595 soil profiles from the second soil census.The data include section depth, soil thickness, sand, silt, clay, gravel, bulk density, porosity, soil structure, soil color, pH value, organic matter, nitrogen, phosphorus, potassium, exchangeable cation amount, exchangeable hydrogen, aluminum, calcium, magnesium, potassium, sodium ion and root amount.The dataset also provides data quality control information. The data is in raster format with a spatial resolution of 30 arc seconds.To facilitate the use of CLM model, soil data is divided into 8 layers, with the maximum depth of 2.3 meters (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) Data file description: 1 Soil profile depth PDEP.nc 2 Soil layer depth "LDEP.nc LNUM.nc" 3 pH Value (H2O) PH.nc 4 Soil Organic Matter SOM.nc 5 Total N TN.nc 6 Total P TP.nc 7 Total K TK.nc 8 Alkali-hydrolysable N AN.nc 9 Available P AP.nc 10 Available K AK.nc 11 Cation Exchange Capacity (CEC) CEC.nc 12 Exchangeable H+ H.nc 13 Exchangeable Al3+ AL.nc 14 Exchangeable Ca2+ CA.nc 15 Exchangeable Mg2+ MG.nc 16 Exchangeable K+ K.nc 17 Exchangeable Na+ NA.nc 18 Particle-Size Distribution Sand SA.nc Silt SI.nc Clay CL.nc 19 Rock fragment GRAV.nc 20 Bulk Density BD.nc 21 Porosity POR.nc 22 Color (water condition unclear) Hue Unh.nc Value Chroma Unc.nc 23 Dry Color Hue Dh.nc Value Chroma Dc.nc 24 Wet Color Hue Wh.nc Value Chroma Wc.nc 25 Dominant and Second Structure S1.nc SW1.nc RS.nc 26 Dominant and Second Consistency C1.nc CW1.nc RC.nc 27 Root Abundance Description R.nc

    0 2020-06-08

  • 黑河生态水文遥感试验:水文气象观测网数据集(7号点-平川桥径流观测数据-2014)

    The data set includes the observation data of river water level and velocity at No.7 point in the dense observation of runoff in the middle reaches of Heihe River from January 1, 2014 to December 28, 2014. The observation point is located in Heihe bridge, Pingchuan Township, Linze County, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 20'2.03 ", E100 ° 5'49.63", with an altitude of 1375m and a channel width of 130m. In 2014, sr50 ultrasonic distance meter was used for water level observation, with acquisition frequency of 30 minutes. Data description includes the following two parts: Water level observation, observation frequency 30 minutes, unit (cm); The data covers the period from January 1, 2014 to December 28, 2014. Flow observation, unit (m3); According to the monitoring flow of different water levels, the flow curve of water levels was obtained, and the change process of runoff was obtained by observing the process of water levels.The missing data are uniformly represented by the string -6999. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).

    0 2020-03-03

  • 黑河生态水文遥感试验:黑河流域中游地表温度同步观测数据集

    The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.

    0 2019-09-12

  • 第三极1:100万居民点分布数据集(2014)

    The Third Pole 1:100,000 settlements distribution data set:Settlements(Tibet_Cities)、Capitals(Tibet_Capitals)、Cities up to 75K(Tibet_Cities_up_to_75K)vector space data set and its attribute name:Cities Name(ENG_NAME)、 urban population(CITY_POP) The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface

    0 2019-11-18

  • 黑河生态水文遥感试验:水文气象观测网数据集(7号点-平川桥径流观测数据-2013)

    The No. 7 hydrological section is located at Pingchuan Heihe River Bridge (100.097° E, 39.334° N, 1375 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.7 hydrological section from 17 June, 2012, to 31 December, 2013. The width of this section is 130 meters. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.

    0 2019-09-12

  • 黑河生态水文遥感试验:黑河流域中游作物叶片气孔导度观测数据集

    The data set include crop leaf stomatal conductance observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf stomatal conductance, a key biophysical parameter, was observed as model parameter or a priori knowledge for crop growth model, or evapotranspiration estimation. 2) Measuring instruments Leaf porometer. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The crop leaf stomatal conductance for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the Super Station The crop leaf stomatal conductance at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. c. the Shiqiao sample site The crop leaf stomatal conductance at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.

    0 2019-09-12

  • 黑河综合遥感联合试验:阿柔加密观测区Envisat ASAR地面同步观测数据集(2008年7月14日)

    The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 14, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:31 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Those provide reliable ground data for retrieval and validation of soil moisture from active remote sensing approaches. Observation items included: (1) soil moisture by POGO soil sensor in No. 1, 2 and 3 quadrates; 25 corner points of each subsite were chosen for the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity; (2) the soil temperature by the handheld infrared thermometer 3# and 5# from BNU in No. 1 quadrate, 1# and 4# in No. 2 quadrate, and 2# and 6# in No. 3 quadrate; 25 corner points of each subsite were measured twice by two groups, and time, the maximum, the minimum and the mean value, and the land cover types were all recorded. (3) spectrum of the grassland, the bare land and the stellera by the thermal infrared spectrometer, 102F. The dataset includes ASAR images, preprocessed data of the thermal infrared spectrometer, 102F, the surface temperature and soil moisture synchronizing with Envisat ASAR.

    0 2019-05-23

  • 黑河综合遥感联合试验:排露沟流域和大野口流域加密观测区固定样地测树调查数据集(2003)

    The main contents of this data set are forest, shrub and grassland sample plot survey data.The fixed samples are located in the drainage ditch valley of qilian mountain and the dayaokou valley where the hydrology observation and test site of the water source conservation forest research institute of gansu province is located. The information of the sample is as follows: Number elevation quadrat size longitude latitude surface type G1 2715 20 × 20 100 ° 17 '12 "38 ° 33' 29" qinghai spruce forest G2 2800 20×36 100°17 '07 "38°33' 27" moss spruce forest G3 2840 20×20 100°17 '37 "38°33' 05" moss spruce forest G4 2952 20 × 20 100 ° 17 '59 "38 ° 32' 47" qinghai spruce forest G5 3015 20 × 20 100 ° 18 '06 "38 ° 32' 42" qinghai spruce forest G6 3100 20 × 20 100 ° 18 '13 "38 ° 32' 31" thicket qinghai spruce forest G7 3300 23.5 × 20 thickets qinghai spruce forest G8 2800 20×20 100°13 '30 "38°33' 29" moss spruce forest B1 2700 12.8×25 moss spruce forest B2 2800 20×20 100°17 '38 "38°32' 59" moss spruce forest B3 2900 20×20 100°17 '59 "38°32' 51" grass spruce forest B4 3028 20×20 100°17 '59 "38°32' 39" moss spruce forest B5 3097 20×20 100°18 '02 "38°32' 32" moss spruce forest B6 3195 20 × 20 100 ° 18 '06 "38 ° 32' 25" qinghai spruce forest B7 2762 20 × 20 100 ° 17 '08 "38 ° 33' 21" qinghai spruce forest B8 2730 20×20 100°17 '06 "38°33' 27" moss spruce forest GM1 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (middle) GM2 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (rare) GM3 3700 5×5 100°18 '03 "38°32' 03" caragana + jilaliu shrub (dense) GM4 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (middle) GM5 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow shrub (sparse) GM6 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (dense) GM7 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (middle) GM8 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (dense) GM9 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (rare) GM10 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM11 3400 5×5 100°18 '18 "38°32' 12" golden pheasant + golden raspberry shrub (dense) GM12 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM13 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" giraliu thicket GM14 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub GM15 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub YC3 2700 1×1 100°17 '14 "38°33' 33" needle thatch field YC4 2750 1×1 100°17 '18 "38°33' 32" needle thatch field YC5 2800 1×1 100°17 '21 "38°33' 33" needle thatch field YC6 2850 1×1 100°17 '25 "38°33' 33" needle thatch field YC7 2900 1×1 100°17 '31 "38°33' 32" aster + needle thatch field YC8 2950 1×1 100°17 '44 "38°33' 23" needle thatch field YC9 2980 1×1 100°17 '48 "38°33' 25" needle thatch field The sample geodesic tree data were surveyed from July to August 2007.The survey included: 1. Basic survey of sample plots in drainage ditch basin: A) sample land setting: sample land number, elevation, slope direction, slope position, slope, soil layer thickness, sample land size, longitude and latitude, community type, soil type, operation status, age B) survey of each wood in the sample plots: sample plot number, tree number, tree species, tree classification, chest diameter, tree height, undershoot height, crown radius 2. Soil profile survey record sheet Including forest/vegetation status, major tree species, forest age, soil name, surface soil erosion, parent rock and material, drainage conditions, land use history, soil profile (soil layer, moisture, color, texture, structure, root system, gravel content) 3. Standard ground cover factor Standard land area, dominant tree species, stand/vegetation origin, elevation, slope direction, slope position, slope, cutting and utilization method, afforestation land preparation type, survey method, canopy coverage, living ground cover, dead cover cover, litter thickness (undivided strata, semi-decomposed layer, decomposed layer) 4. Canopy survey: 5. Draft quadrat (1m×1m) survey record sheet Including species name, number, coverage, average height 6. Results of determination of soil physical properties in source forest of qilian mountain (land sample survey) Contains the soil physical properties measurement process (+ wet mud weight aluminum box, aluminum box, soil moisture content, suddenly bulk density, etc.), bringing biomass measurement (total fresh weight of shrub and herb, fresh weight of sample, sample dry weight, etc.), litter dry weight (including mosses) layer and the largest capacity calculation process (of moss and litter thickness, total fresh weight, fresh weight of samples, the dry weight of the sample, soaking for 24 h after heavy, maximum water holding capacity, the largest water depth, the biggest hold water rate, maximum moisture capacity) 7. Bush sample survey: Including species name, number, coverage, average height 8. Standard sample land setting and questionnaire for each wooden inspection ruler Including tree species, tree classification, age, chest diameter, number of height, undershoot height, crown radius 9. Litter layer survey record sheet Including litter (decomposed layer, semi-decomposed layer, decomposed layer) thickness 10. Update survey records: Including tree species, natural regeneration (height <30cm, height 31-50cm, height >51cm), artificial regeneration (height <30cm, height 31-50cm, height >51cm) This data set can provide ground measured data for remote sensing inversion of forest structure parameters.

    0 2020-03-10

  • 黑河综合遥感联合试验:冰沟流域加密观测区EO-1 Hyperion地面同步观测数据集(2008年3月22日)

    The dataset of ground truth measurements for snow synchronizing with EO-1 Hyperion was obtained in the Binggou watershed foci experimental area on Mar. 22, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included: (1) snow surface emissivity by the portable emissivity determinator near the Binggou cold region hydrometerological station; (2) snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A from 11:20-13:53 (BJT) on Mar. 2, 2008; (3) snow parameters in BG-A, BG-B, BG-C, BG-D, BG-E and BG-F, and variables including the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case and the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer simultaneous with the satellite; (4) the land surface infrared temperature in BG-D, BG-E, BG-B and BG-F during the airborne mission; (5) fresh snow albedo by the total radiometer east to A2; (6) snow spectrum by the portable ASD from Xinjiang Meteorological Administration and Nanjing University, GPS recordings enclosed. Two files including raw data and preprocessed data were archived.

    0 2019-05-23

  • 黑河生态水文遥感试验:黑河下游LI-6400光合观测数据集(2012年7月)

    The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the natural oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included the main vegetation type in the lower reaches of Heihe river: Populus forest, which located in the Populus forest station and the mixed forest station of Ejinaqi. Observation periods lasted from 2014-07-24 to 2014-07-31. This dataset included the raw observation data of the Populus forest observed by LI-6400 during the observation periods. 1) Objectives of observation The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. 2) Instrument and theory of the observation Measuring instrument: LI-6400XT Portable Photosynthesis System. Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. 3) Time and site of observation Observation site in the Populus forest station. Observation time: 2014-07-24 Observation site in the mixed forest station. Observation time: From 2014-07-25 to 2014-07-31. 4) Data processing The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type”.

    0 2019-09-15