• 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(16号点自动气象站)

    This dataset contains the automatic weather station (AWS) measurements from site No.16 in the flux observation matrix from 1 Jun to 17 September, 2012. The site (100.36411° E, 38.84931° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1564.31 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP155; 5 m, towards north), rain gauge (TE525M; 10 m), wind speed (03001; 10 m, towards north), a radiometer (Q7; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, and -0.04 m), soil moisture profile (CS616; 0.02, 0.04 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), precipitation (rain, mm), wind speed (Ws_10 m, m/s), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, and Ts_4 cm, ℃), and soil moisture profile (Ms_2 cm and Ms_4 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15

  • 黑河生态水文遥感试验:黑河流域中游盈科绿洲与花寨子荒漠机载PLMR地面同步观测数据集(2012年6月28-29日)

    The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

    0 2019-09-15

  • 黑河生态水文遥感试验:黑河流域中游箱式法土壤呼吸观测数据集(2012)

    During the period of middle stream experiment in 2012, closed chamber and gas chromatography method was used to measure soil respiration of different land surface, including farmland, orchard, wetland, sparse grassland (Huazhaizi), Gobi, desert. Instrument: Assimilation Chamber Measuring method: Assimilation chamber consists of two parts: the base and the box. Base made of PVC material, the bottom buried in the soil. The box is made of stainless steel cubes, with one open side. When measuring the box cover on the base, air in the box was sampled using injector. The extracted air was injected into the gas sampling bag, and shipped back to the laboratory analysis of the concentration of CO2 by gas chromatography in Institute of Botany, The Chinese Academy of Sciences. Using the difference of concentration of CO2 at two times to calculate soil respiration. Each measurement points are located three repeat. After five minutes sealed box cover start mining the 1st sample, and then taken once every sample interval of 10 minutes, four times in total mining. Date content: Data content includes header information and once every 10 days three times repeated observations and the average of the three times. Measuring location: Gobi (Bajitan Gobi station), Wetland (Zhangye wetland Station), Sparse grassland (Huazhaizi desert steppe Station), Desert (Shenshawo sandy desert Station), Orchard (site No.17 eddy covariance system), Maize Farmland (Daman Superstation) Measuring time: 16-6-2012, 28-6-2012, 9-7-2012, 18-7-2012, 30-7-2012, 11-8-2012, 21-8-2012, 2-9-2012, 13-9-2012, 22-9-2012 (UTC+8).

    0 2019-09-12

  • 甘肃河西地区荒漠植物种群繁殖对策数据集(2004-2006)

    The research project on the breeding strategies of desert plants in hexi region of gansu province belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by professor an lizhe of lanzhou university. The project runs from January 2004 to December 2007. Remittance data of the project: 1. Effect of super - dry preservation on seeds The data is in Word format and contains a lot of analysis charts. A comparative study was conducted on the changes of vitality of overlord seeds and rhizoma coptidis seeds stored at 45℃, room temperature and 15℃ respectively, and the effects of dampening treatment, artificial aging and ultra-dry treatment on electrical conductivity and physiological activity indexes of seeds were conducted.The details are as follows: Energy change of seeds was preserved at 45℃ FIG. 1 germination rate (%) of overlord seeds stored at 45℃、FIG. 2 germination index of overlord seeds stored at 45℃、FIG. 3 vigor index of the seeds stored at 45℃. Change of seed vigor at room temperature FIG. 4 germination rate (%) of overlord seeds stored at room temperature、FIG. 5 germination index of overlord seeds stored at room temperature、FIG. 6 vigor index of overlord seeds preserved at room temperature. 15℃ preservation of seed vitality changes FIG. 7 germination rate of overlord seeds stored at 15℃ (%)、FIG. 8 germination index of alba seeds stored at 15℃、FIG. 9 vigor index of the seeds stored at 15℃. Changes of seed vigor of rhizoma coryzae at 45℃ FIG. 10 germination rate (%) of rhizoma coptidis seeds stored at 45℃、FIG. 11 germination index of the seeds of rhizoma coryzae at 45℃、FIG. 12 vigor index of seeds of corydalis corydalis preserved at 45℃. Changes of seed vigor of rhizoma coryzae at room temperature FIG. 13 germination rate (%) of rhizoma corydalis seeds preserved at room temperature、FIG. 14 germination index of seeds preserved at room temperature、FIG. 15 vigor index of seeds of corydalis corydalis preserved at room temperature Changes of seed vigor of rhizoma corydalis in 15℃ storage FIG. 16 germination rate (%) of rhizoma coptidis seeds stored at 15℃、FIG. 17 germination index of the seeds of rhizoma coptidis preserved at 15℃、FIG. 18 vigor index of seeds of corydalis sativus preserved at 15℃ Effect of slow wetting treatment on relative conductivity of seeds FIG. 28 changes in the relative conductivity of arrobatus seeds without dampening treatment、FIG. 29 changes of relative conductivity of overlord seeds after slow wetting treatment、FIG. 31 changes of relative electrical conductivity of seeds of rhizoma coryzae after dampening treatment Effects of artificial aging treatment on seed of archaea chinensis l FIG. 34 effects of artificial aging treatment on germination rate of overlord seeds、FIG. 35 effect of artificial aging treatment on seed vigor index、FIG. 36 effects of artificial aging treatment on the relative conductivity of overlord seeds Effects of artificial aging treatment on seeds of coryza sativa l FIG. 37 effect of artificial aging treatment on germination rate of seeds of coryza sativa l、FIG. 38 effect of artificial aging treatment on seed vigor index of rhizoma coryzae、FIG. 39 effects of artificial aging treatment on the relative electrical conductivity of the seeds of coryza sativa l Effects of artificial aging on the content of aldehydes in seeds after 15 days FIG. 52 effects of artificial aging treatment on the content of aldehydes in the seeds after 15 day、FIG. 53 effects of artificial aging treatment on the content of aldehydes in seeds of prunus chinense after 15 days, Effect of super - dry treatment on physiological activity index of seed Table 31 effect of super - dry treatment on physiological activity index of monkshood seed Table 32 influence of hyperdrying treatment on physiological activity index of seeds of coryza sativa l 2. Micromorphological and structural characteristics of the skin of desert plants (including experimental conditions, microscopic images of the skin microstructure and analysis of distribution of 47 plants, genus, species code, list of length and weight of long and short axes of seeds, and list of seed elements)

    0 2020-03-10

  • 黑河流域生态水文综合地图集:黑河流域水文地质图

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The hydrogeological map of Heihe River Basin is one of the chapters on hydrology and water resources in the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: hydrogeological map of Hexi Corridor (1:50000) issued by Gansu Provincial Institute of address survey. According to the survey conducted by Gansu Provincial Institute of geology, 1516 hydrogeological boreholes (119049 meters in total) were collected and sorted out; and 6947 groundwater extraction wells.

    0 2020-03-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(4号点-乌靖桥径流观测数据-2014)

    The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.

    0 2020-03-14

  • 黑河生态水文遥感试验:水文气象观测网数据集(黄藏寺站自动气象站-2015)

    This data set contains meteorological element observation data from January 1, 2015 to April 16, 2015 from huangzangsi station, upstream of heihe hydrometeorological observation network.The station is located in huangzangsi village, babao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.1918E, 38.2254N and 2612m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Air temperature is between 1.1-1.6 and 2.7-3.12, and data is missing due to sensor problems.The soil temperature of 0cm is between 1.3-1.12 and 1.22-4.16, and data is missing due to sensor problems.The temperature of 10cm soil is between 4.5-4.16, and data is missing due to sensor problems.The station was demolished after April 16;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-03-04

  • 葫芦沟水文断面流量观测数据集(2012)

    1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2012 to December 1, 2012. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.

    0 2020-03-11

  • 葫芦沟流域冻土冻结深度数据集(2011)

    1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m

    0 2020-03-11

  • 黑河流域FAPAR地面观测数据集(2011)

    This data includes the fAPAR and Lai data collected in 2011. The acquisition equipment is SunScan and LAI-2000. Among them, fAPAR measures 4 times of spread value. The sampling points are located in Zhangye agricultural demonstration base on July 30, 2011, next to national highway 312 in Ejina banner on August 4, sandaoqiao in Ejina banner on August 5 and Jiuquan Satellite Launch Center on August 6, 2011. Around Zhangye from July 4 to July 15, 2012.

    0 2020-03-07