• 葫芦沟流域气象人工观测数据集(2012)

    1. Data overview: In 2012, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e;Latitude: 38.3n;Height: 2980 m.

    0 2020-03-11

  • 黑河流域社会经济发展情景分析数据(2020 & 2030)

    Data analysis method: macroeconomic development forecast Space scope: Sunan County, Ganzhou District, Minle County, Linze County, Gaotai County, Shandan County, Jinta County, Ejina, Suzhou District, Jiayuguan Time frame: 2020, 2030 Data: GDP (1 million yuan), GDP growth rate, primary production (1 million yuan), primary production growth rate, secondary production (million yuan), secondary production growth rate, tertiary production (million yuan), tertiary production growth rate, primary production rate Second rate, third rate

    0 2020-07-28

  • SPOT Vegetation 三江源物候期数据集(1999-2013)

    The data set includes the estimated data of the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on 10-day synthetic NDVI products from the SPOT satellite. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage is from 1999 to 2013, and the spatial resolution is 1 km.

    0 2019-09-13

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(1号点大孔径闪烁仪)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.1 in the flux observation matrix. There were two types of LASs at site No.1: German BLS900 and China zzlas. The observation periods were from 7 June to 19 September, 2012, and 16 June to 19 September, 2012, for the BLS900 and the zzlas, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS900 and the receiver of zzlas. The site (north: 100.352° E, 38.884° N; south: 100.351° E, 38.855° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3256 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.05E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the zzlas. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15

  • 祁连山综合观测网:黑河流域地表过程综合观测网(景阳岭站涡动相关仪-2018)

    This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from August 28 to December 31 in 2018. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    0 2020-07-25

  • 三江源1:100万水系数据集(2017)

    This data originates from the National Geographic Information Resources Catalogue Service System, which was provided free to the public in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. This data set is composed of 1:1 million water coefficient data in Sanjiangyuan area, including three layers: water system surface (HYDA), water system line (HYDL) and water system point (HYDP). The water system surface (HYDA) includes lakes, reservoirs and double-line rivers; the water system line (HYDL) includes single-line rivers, ditches, river structure lines; and the water system point (HYDP) includes springs and wells. HYDA Attribute Item Name and Definition: Attribute Item Description Fill in Example GB National Standard Classification Code 210101 HYDC Water System Name Code KJ2103 NAME Name Heihe WQL Water Quality PERIOD Seasonal Month 7-9 TYPE Type Pass HYDL property item name and definition: Attribute Item Description Fill in Example GB National Standard Classification Code 210101 HYDC Water System Name Code KJ2103 NAME Name Heihe PERIOD Seasonal Month 7-9 HYDP property item name and definition: Attribute Item Description Fill in Example GB National Standard Classification Code 210101 NAME TYPE Type ANGLE Angle 75 Water coefficient data GB code and its meaning: Attribute Item Code Description GB 210101 Surface rivers 210200 Seasonal River 210300 Dry River 230101 Lakes 230102 Ponds 230200 Seasonal Lake 230300 Dry Lake 240101 Build Reservoir 240102 Built-in Reservoir

    0 2019-05-10

  • 黑河综合遥感联合试验:预试验期冰沟流域加密观测区雪特性分析仪(Snowfork)观测数据集(2007年12月)

    The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Dec. 5-16 2007, during the pre-observation period. The aims of the measurements were to verify applicability of the instruments and to acquire snow parameters for simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included: (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. Five files including raw data and processed data are kept, data by the Snowfork on Dec 5, data by BG-A MODIS on Dec 6 and 7, data in BG-B, BG-C, BG-D and BG-E on Dec 10, and data in BG-D with the microwave radiometer on Dec 14 and 16.

    0 2019-09-14

  • 黑河综合遥感联合试验:大野口关滩森林站超级样地地基激光雷达扫描数据集

    This data set is the acquisition of the super-site forest 3D structure of the scanning point cloud data and other ancillary data based on the ground-based lidar (LiDAR) . Data acquisition time is from June 4, 2008 to June 12, 2008. Riegl LMS-Z360i ground-based LiDAR was used. The super site is divided into 16 sub-samples of 25m×25m, LiDAR base station points are set in each sub-sample, and LiDAR acquisition 3D full coverage LiDAR point metadata is set at each base station point. The content of the data set: total station measurement coordinates (x, y, z) for each LiDAR data acquisition base station point, the instrument attitude measured by a digital slope meter and an angle meter when each station collects data, and the laser radar scanning point cloud data at each station. This data set can provide realistic 3D forest scenes, provide detailed ground observation data for the development and correction of various 3D forest remote sensing models, and provide ground verification data for airborne and spaceborne remote sensing data.

    0 2019-07-16

  • 黑河综合遥感联合试验:预试验期冰沟加密观测区积雪光谱观测数据集(2007年12月5日至15日)

    The dataset of snow spectral reflectance observations was obtained in the Binggou watershed foci experimental area from Dec. 5 to Dec. 15, 2007 during the pre-observation period. The aims of the measurements were to verify feasibility of the predetermined observation schemes and to collect data for retrieval from remote sensing approaches. All data were acquired by ASD spectrometer from Xinjiang Meteorological Administration. Observation items included: (1) Random observations on snow spectrum in the chosen snowpack at the Binggou cold region hydrometeorological station on Dec. 5, 6 and 7, 2007 (2) Snow spectrum observations in BG-A simultaneous with MODIS and Terra MISR on Dec. 10, 2007 (3) The pure and the mixed snow pixel spectrum in BG-A on Dec. 15, 2007 (4) Multi-angle snow spectrum in the chosen snowpack in BG-A on Dec. 15, 2007 Seven subfolders including raw data and pre-processed data are named after the acquisition time, Dec. 5, 2007, Dec. 6, 2007, Dec. 7, 2007, Dec. 10, 2007, Dec. 13, 2007, Dec. 15, 2007 and Dec. 15, 2007, respectively.

    0 2019-05-23

  • 黑河流域不同生境荒漠植物光合器官水平气体交换测定数据(2013)

    As determined in mid-august 2013, planting species: bubbly spines (different habitats are mid-range intermountain lowland and gobi), red sand (different habitats are mid-range gobi and downstream gobi). Using the brother company of LI - 6400 Portable Photosynthesis System (Portable Photosynthesis System, LI - COR, USA) and LI - 3100 leaf area meter, etc., to the desert plant photosynthetic physiological characteristics were observed. The symbolic meaning of the observed data is as follows: Obs,observation frequency ; Photo ,net photosynthetic rate,μmol CO2•m–2•s–1; Cond stomatal conductance,mol H2O•m–2•s–1 ; Ci, Intercellular CO2 concentration, μmol CO2•mol-1; Trmmol,transpiration rate,mmol H2O•m–2•s–1; Vpdl,Vapor pressure deficit,kPa; Area,leaf area,cm2; Tair,free air temperature ,℃; Tleaf,Leaf temperature,℃; CO2R,Reference chamber CO2 concentration,μmol CO2•mol-1; CO2S,Sample chamber CO2 concentration,μmol CO2•mol-1; H2OR,Reference chamber moisture,mmol H2O•mol-1; H2OS,Sample chamber moisture,mmol H2O•mol-1; PARo,photon flux density,μmol•m–2•s–1; RH-R,Reference room air relative humidity,%; RH-S,Relative humidity of air in sample room,%; PARi,Photosynthetic effective radiation,μmol•m–2•s–1; Press,barometric pressure,kPa; Others are the state parameters of the instrument at the time of measurement.

    0 2020-03-10