The dataset of ground truth measurements for snow synchronizing with EO-1 Hyperion and Landsat TM was obtained in the Binggou watershed foci experimental area on Mar. 17, 2008. Observation items included: (1) Snow parameters as snow depth by the ruler, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer simultaneous with the satellite in BG-A, BG-E, BG-F and BG-H. (2) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A, BG-E and BG-H. Besides, 25-hour fixed-point continuous observation was carried out at the Binggou cold region hydrometerological station. (3) The snow spectrum by ASD (Xinjiang Meteorological Administration) (4) Snow albedo by the total radiometer Two files including raw data and preprocessed data were archived.
0 2019-05-23
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
0 2020-05-28
Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.
0 2019-09-15
Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin
0 2020-07-28
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
0 2020-03-28
The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
0 2019-09-12
The dataset of the drop spectrometer (PARSIVEL) observations was obtained at an interval of 30 seconds in the arid region hydrology experiment area from May 18 to Jul. 5, 2008. The site was chosen in Xiaoman township (38.86°N, 100.41°E, 1515m), Ganzhou district, Zhangye city, Gansu province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The sampling area of PARSIVEL was 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.
0 2019-09-12
Vegetation functional type (PFT) is the combination of large plant species according to the ecosystem function of plant species and the way of resource utilization. Each plant functional type shares similar plant properties, which simplifies the diversity of plant species to the diversity of plant function and structure.Vegetation functional types have been used in the dynamic global vegetation model (DGVM) to predict changes in ecosystem structure and function under global change scenarios.The 1km vegetation functional pattern map of heihe basin is based on the 1km land cover map of heihe basin (MICLCover subset of heihe basin), and is divided by using the vegetation functional climate rules proposed by Bonan et al. (2002).The climate data utilize the 0.1 degree atmospheric drive data of he jie and Yang kun, developing China region from 1981 to 2008.This map can be used in the land surface process model of heihe river basin.
0 2020-03-11
This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from the burg station upstream of heihe hydrometeorological observation network.The station is located in caochang, qilian county, qinghai province.The latitude and longitude of the observation point is 100.9151e, 37.9492n and 3294m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The temperature of 4cm soil was between May 31, 2014 and June 17, 2014. Due to sensor problems, data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
The sample plot survey data are as follows: in August 2013, 30 forest sample plots were set up in tianlaochi basin, with the sample plot specification of 10 m×20 m, and the long side of the sample plot was parallel to the slope direction, including 26 Qinghai spruce forests, 2 Qilian yuanberlin forests and 2 spruce-cypress mixed forests. within the sample plot, the diameter at breast height (diameter at trunk height of 1.3 m) of each tree was measured by using a ruler. Using hand-held ultrasonic altimeter to measure the tree height and the height under branches (the height of the first living branch at the lower end of the crown) of each tree, measuring the crown width in the north-south direction and the east-west direction by using a tape scale, and positioning the sample plot by using differential GPS. Taking the carbon storage data of the sample plot as the optimal control condition, using Kriging interpolation to obtain the biomass spatial distribution map driving field, using HASM algorithm to simulate the forest biomass spatial distribution map of the waterlogging pool, the simulation results conform to the vegetation distribution law of the study area, and obtain better effects.
0 2020-07-28
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn