The strong spatial and temporal changes of precipitation often make it impossible to accurately know the spatial distribution and intensity changes of precipitation during the precipitation observation of conventional foundation stations. Satellite microwave remote sensing can overcome this limitation and achieve global scale precipitation and cloud observation. Compared with infrared/visible light, which can only reflect cloud thickness and cloud height, microwave can penetrate the cloud, and also use the interaction between precipitation and cloud particles in the cloud and microwave to detect the cloud and rain more directly. This data use the surface precipitation, obtained by the DPR double wave band precipitation radar carried by GPM, as the true value, soil temperature/humidity of NDVI, DEM and ERA5 as reference data. And the multi-band passive brightness temperature data of GMI is used to invert the instantaneous precipitation intensity during the warm season (May-September) in Tibetan Plateau, then the result is re-sampled to the spatial resolution of 0.1°and accumulated them to a day.
0 2021-04-09
This data set contains eddy correlativity observation data from January 1, 2014 to December 31, 2014 at the gobi station in baji tan, middle reaches of the heihe hydrometeorological observation network.The station is located in zhangye city, gansu province.The longitude and latitude of the observation point are 100.30420E, 38.91496N and 1562.00m above sea level.The rack height of the vortex correlative is 4.6m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic anemometer (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift, etc., shall be marked in red font.On March 2, solstice, March 31, October 13, solstice, November 14, and December 12, solstice, December 31, 10Hz data was missing due to the memory card storage data problems, which were replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
0 2020-04-10
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
0 2019-05-28
This data includes experimental data of grassland interception control and observation data of maximum water holding capacity of grassland. The maximum water holding capacity experiment was carried out in 2011. The main vegetation types selected are Carex, Polygonum viviparum, Plantago asiatica and Potentilla chinensis. The maximum water holding capacity experiment was carried out on each type of samples and the samples were photographed. The specific data obtained are shown in the document. The grassland canopy interception was carried out in the growing season of 2012, and was completed by artificial rainfall control experiment. At the end of the growing season, the main types of grassland in the basin were sampled according to grazing and grazing ban. During artificial rainfall, rainfall and penetrating rainfall are recorded every 1min. Finally, the grassland canopy interception is calculated by the difference between rainfall and penetrating rainfall.
0 2020-03-12
The leaf epidermis micromorphological structure of the constructive species in the arid area of the middle and lower reaches of Heihe River Basin. The plant material number is consistent with the number in the sampling table. Refer to the sampling table number to determine the material and its distribution position.
0 2020-03-07
The North American Multi-Model Ensemble (NMME) Forecast is a multi-modal ensemble seasonal forecasting system jointly published by the US Model Center (including NOAA/NCEP, NOAA/GFDL, IRI, NCAR, and NASA) and the Canadian Meteorological Centre. The data include retrieval data from 1982 to 2010 and real-time weather forecast data from 2011 to the present. The forecasting system covers the whole world with a temporal resolution of one month and a horizontal spatial resolution of 1°. NMME has nine climate forecasting models, and each contains 6-28 ensemble members, with a forecasting period of 9-12 months. The name, source, ensemble members, and forecasting period of the climate models are as follows: 1) CMC1-CanCM3, Environment Canada, 10 models, 12 months 2) CMC2-CanCM4, Environment Canada, 10 models, 12 months 3) COLA-RSMAS-CCSM3, National Center for Atmospheric Research, 6 models, 12 months 4) COLA-RSMAS-CCSM34, National Center for Atmospheric Research, 10 models, 12 months 5) GFDL-CM2p1-aer04, NOAA Geophysical Fluid Dynamics Laboratory, 10 models, 12 months 6) GFDL-CM2p5-FLOR-A06, NOAA Geophysical Fluid Dynamics Laboratory, 12 models, 12 months 7) GFDL-CM2p5-FLOR-B01, NOAA Geophysical Fluid Dynamics Laboratory, 12 models, 12 months 8) NASA-GMAO-062012, NASA Global Modeling and Assimilation Office, 12 models, 9 months 9) NCEP-CFSv2, NOAA National Centers for Environmental Prediction, 24/28 models, 10 months With the exception of the CFSv2 model (which includes only precipitation and average temperature), the variables of other models include precipitation, average temperature, maximum temperature, and minimum temperature. Each model ensemble member stores one NC file every month for each variable. The meteorological elements, variable names, units, and physical meanings of each variable are as follows: 1) Average temperature, tref, K, monthly average near-surface (2-m) average air temperature 2) Maximum temperature, tmax, K, monthly average near-surface (2-m) maximum air temperature 3) Minimum temperature, tmin, K, monthly average near-surface (2-m) minimum air temperature 4) Precipitation, prec, mm/day, monthly average precipitation. The dataset has been widely applied in climate forecasting, hydrological forecasting, and quantitatively estimating model forecasting uncertainty.
0 2020-06-03
The data set recorded the total investment in fixed assets in Qinghai from 1980 to 2016. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The table contains 11 fields. Field 1: Year Interpretation: Year of the data Field 2: Total Interpretation: Total investment in fixed assets Unit: 100,000,000 yuan Field 3: State-owned economy Interpretation: State-owned economic investment in fixed assets Unit: 100,000,000 yuan Field 4: Collective Economy Interpretation: Collective economic investment in fixed assets Unit: 100,000,000 yuan Field 5: Individual Economy Interpretation: Individual economic investment in fixed assets Unit: 100,000,000 yuan Field 6: Other types of economy Interpretation: Other economic investment in fixed assets Unit: 100,000,000 yuan Field 7: Total Growth Interpretation: Total growth of investment in fixed assets Unit: % Field 8: State-owned growth Interpretation: Growth of state-owned economic investment in fixed assets Unit: % Field 9: Collective growth Interpretation: Growth of collective economic investment in fixed assets Unit: % Field 10: Individual Growth Interpretation: Growth of individual economic investment in fixed assets Unit: % Field 11: Other growth Interpretation: Growth of other economic investment in fixed assets Unit: %
0 2019-09-12
The dataset of ground-based microwave scatterometer and snow parameter observations was obtained in the Binggou watershed experimental area on Mar. 16, 2008. Observation items included: (1) Snow backscattering coefficient by the scatterometer (2) Snow parameters as the snow surface temperature by the probe thermometer, snow grain size by the handheld microscope, snow density by the snow shovel, the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer in BG-I. (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) at the Dadongshu mountain pass; the major and minor axis and shape of the snow layer grain through the snow sieve. (4) Snow albedo by the total radiometer from 10:29 to 15:00 (5) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork at the Dadongshu mountain pass Two subfolders including raw data and preprocessed data were archived.
0 2019-05-23
This data set contains the eddy correlograph observation data from January 1, 2015 to December 31, 2015 at the alou superstation, upstream of the heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which the calibration data of Li7500A of the eddy current system on April 16-17 is missing;When 10Hz data is missing due to a problem with the memory card storage data (9.20-10.21,11.3-11.18), the data is replaced by the 30-min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
0 2020-04-10
The monthly precipitation data set of China's alpine mountains includes the qilian mountains (1960-2013), tianshan mountains (1954-2013) and Yangtze river source (1957-2014). The distributed hydrological model needs high-precision spatial distribution information of precipitation as input.Because of the scarcity of stations, the precipitation interpolation at stations cannot reflect the spatial distribution of precipitation in the alpine mountainous areas.Generation method of this dataset: (1) collect precipitation data of national meteorological stations and hydrological stations in various regions, and add precipitation observation data of field stations of Chinese academy of sciences above an altitude of 4000m; (2) use the temperature data of each station to correct the collected precipitation data of different precipitation types; (3) establish the relationship between precipitation data and altitude, longitude and latitude, and fit monthly to generate monthly precipitation data set of 1km scale. The interpolation year of this data is 1954-2014. The data projection method is Albers projection. The spatial interpolation precision is 1-km, and the time precision is monthly data.The results show that the interpolation precipitation is reliable. The data is stored in ASCII files. The file names of the monthly precipitation data files of tianshan mountain and Yangtze river source are in the form yyyymm.txt. YYYY is the year and MM is the month.The monthly precipitation data of qilian mountain is named as: month_10001.txt, this file is the precipitation data of January 1960, successively month_10002.txt is the precipitation of February 1960, and month_10013.txt is the precipitation data of January 1961,......Month_10648.txt represents the precipitation data for December 2013.Each ASCII file represents the grid precipitation data of the day in mm.
0 2020-03-27
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn