• 黑河综合遥感联合试验:临泽草地加密观测区Envisat ASAR地面同步观测数据集(2008年5月24日)

    The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the saline plot B, the alfalfa plot D and the barley plot E of the Linze grassland foci experimental area on May 24, 2008. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. The quadrate was divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Corner points were chosen. Simultaneous with the satellite overpass, numerous ground data were collected, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3), the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot B; soil moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by WET, the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot D; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot E. Data were archived in Excel file. Those provide reliable ground data for retrieval and validation of soil moisture and alinity content with active microwave remote sensing approaches. See WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area for more information.

    0 2019-05-23

  • 黑河生态水文遥感试验:多尺度地表温度观测试验-黑河下游组分温度数据集(热像仪)

    This dataset includes component temperatures measured by the thermal imager at the Mixed Forest and Sidaoqiao stations between 23 July and 18 August, 2014. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, a Testo 890-2 thermal imager (Testo Inc., Germany) with a resolution of 640 × 480 pixels was employed to acquire brightness temperature images. The imager was manually operated from a 10-m height platform of the tower between 10:00-16:00 (China Standard Time, CST) with an observation interval of 1-h on cloudless days. On August 4th observations were acquired between 11:00 and 17:00 at an interval of 10-min to match observations acquired with an airborne TIR imager. The ground based imager was pointed to five viewing directions (southeast-SE, east-E, northeast-NE, northwest-NW, and southwest-SW) and was inclined 25°–45° below the horizon depending on viewing direction. At Sidaoqiao station, a Testo 875-2i imager (Testo Inc., Germany) with a resolution of 160 × 120 pixels was manually operated from a 10-m high platform to acquire brightness temperature images in directions SW, SE, NE, and NW. Depending on the targets in each viewing direction, the imager was inclined to 30°–45° below the horizon. Observations at Sidaoqiao and Mixed Forest stations were almost synchronous. Furthermore, visible images were taken simultaneously with the aforementioned two TIR imagers (2048 × 1536 pixels for Testo 890-2 and 640 × 480 pixels for Testo 875-2i).

    0 2020-10-13

  • 黄河上游流域边界图(2012)

    I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. The watershed is an important natural unit. Using the SRTM-DEM and ASTER-GEDEM data sets as the data source, under the ArcGIS software platform, the method of combining river burning method and river scalar method is used to extract the upper reaches of the Yellow River basin. The boundary of the basin from the source area of ​​the Yellow River to the upper reaches of the Yellow River in Hekou Town. Ⅱ. Data processing description Using SRTM-DEM and ASTER-GDEM issued by the United States as data sources, under the ArcGIS software platform, the method of combining river burning method and river scalar method was used to extract the upper reaches of the Yellow River basin. Because the ratio of the rivers from the Three Lakes Estuary to Hekou Town is extremely small, there is a certain error in the boundary of the basin. Ⅲ. Data content description The map is stored in ArcGIS and .shp files. The river basin boundary spans five provinces (autonomous regions) of Qinghai, Sichuan, Gansu, Ningxia, and Inner Mongolia, with a total area of ​​55.06 × 104 km2. Ⅳ. Data usage description Watershed boundary is an important natural unit for hydrology, soil erosion, and non-point source pollution research. By extracting watershed boundaries, the migration range of soil erosion and non-point source pollution can be delineated.

    0 2020-06-05

  • 北极1:100万道路数据集(2014)

    The 1:1,000,000 road data set of the North Pole includes the Arctic_Major_Routes, the Arctic_Minor_Routes, the Arctic_railway vector space data and the related attribute data: road Name and Type. The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,It's most comprehensive, current and seamless geographic digital data for the whole earth. The world map coordinate system is latitude and longitude, WGS84 datum surface,Arctic specific projection parameters(North_Pole_Stereographic).

    0 2019-09-15

  • 黑河生态水文遥感试验:水文气象观测网数据集(张掖湿地站涡动相关仪-2017)

    The data set contains the vortex correlativity instrument observation data of zhangye wetland station in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The site is located in zhangye city, gansu province.The latitude and longitude of the observation point is 100.44640E, 38.97514N, and the altitude is 1460.00m.The height of the vortex correlation instrument is 5.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (Gill) and the CO2/H2O analyzer (Li7500A) is 25cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, Angle correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked in red. From April 3 to 12, due to instrument calibration, data is missing.When 10Hz data is missing due to a memory card storage problem, the data is replaced by 30min flux data output from the collector. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

    0 2020-03-05

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(17号点自动气象站)

    This dataset contains the automatic weather station (AWS) measurements from site No.17 in the flux observation matrix from 12 May to 17 September, 2012. The site (100.36972° E, 38.84510° N) was located in an orchard in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.63 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). One of the infrared temperature sensors (IRT_2) was adjusted to a zenith angle of 50° after 6 August. The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15

  • 黑河流域水资源管理制度历史变迁数据

    Based on the historical documents, the changes of water resources management organization and management system in Heihe River Basin are sorted out. In this paper, the historical records of water resource management institutions, official positions and their positions, water resource management laws and regulations, and water affairs contradictions in the Heihe River Basin since the Western Han Dynasty are reviewed. From the Western Han Dynasty to the 1950s.

    0 2020-03-07

  • 黑河生态水文遥感试验:黑河流域上游样带机载激光雷达原始数据

    On 25 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

    0 2019-05-23

  • 黑河综合遥感联合试验:临泽站加密观测区地物光谱观测数据集(2008年5月-7月)

    The dataset of object spectral was obtained in the Linze station foci experimental area from May 25 to Jul. 11, 2008. The measurement instrument is ASD Spectroradiometer (350~2 500 nm) from BNU and the reference board (40% before Jun. 15 and 20% hereafter). The selected typical objects included maize field, soil, soil with known moisture and desert scrub. The measured quadrates included Wulidun farmland quadrates (May 28 and 30, Jun. 16 and 29 and Jul. 11), the desert transit zone strips (May 28 and 30 and Jun. 16) and Linze station quadrates (May 23 and Jul. 9) Besides, soil samples were collected inside Linze station quadrates on Jun. 24 and 30, 2008. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

    0 2019-09-14

  • 黑河生态水文遥感试验:资源三号(ZY-3)遥感数据集

    This dataset includes 44 scenes, covering the whole Heihe River Basin, which were acquired on (yy-mm-dd) 2012-08-25, 2012-09-03, 2012-09-08, 2012-09-13, 2012-09-18, 2012-09-23, 2012-09-28, 2012-10-03, 2012-10-13, 2012-10-18, 2012-10-22, 2012-11-01, 2012-11-11, 2012-11-21. The data are of multi-spectral bands with data product of Level 1. The spatial resolution is 1 m. ZY-3 dataset was acquired from purchase.

    0 2020-10-13