The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze station foci experimental area on Jul. 8, 2008. Observation items included: (1) soil moisture (0-5cm) measured by the cutting ring method (50cm^3) in P1 to P6 strips (17 sample points each). Photos were taken. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) from P1 to P6 strips. There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
0 2019-05-23
This data is obtained by spatial interpolation and permafrost simulation through the surface temperature at 0 cm of nine stations in and outside the source area of the upper reaches of Heihe River. In the figure, 1 represents seasonal frozen soil and 2 represents permafrost. The data is in TIFF format, WGS-84 is used for projection, and the spatial range is 37.7263n-39.0976n, 98.5769e-101.1608e.
0 2020-05-06
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2018. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The average soil temperature was rejected during February 16 to March 31 and April 15 to May 20 because of broken of the sensor line; Soil heat flux were wrong occasionally during November to December. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
0 2020-07-25
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer and synchronous measurement from November 24-25, 2013 in the desert of Minle County, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 24-25, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage, 18.7ghz h polarization damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.3m 4. Data format:. Xls
0 2020-03-14
The data is the distribution map of 100,000 deserts in the Tarim River Basin. This data uses 2000 TM images as the data source to interpret, extract and revise, and uses remote sensing and geographic information system technology in combination with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code), ashm_id (desert code), of which desert code is as follows: flowing sand 2341010, semi-flowing sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000, saline-alkali land 2343000
0 2020-09-15
This data is from "China 1:100,000 land use data".China 1:100,000 land use data was constructed in three years based on Landsat MSS, TM and ETM remote sensing data by using satellite remote sensing as a means to organize remote sensing science and technology teams from 19 institutes affiliated to the Chinese academy of sciences (cas) in the "eighth five-year plan" major application project "national macro survey and dynamic research on remote sensing of resources and environment". According to the 1:100,000 landuse data of gansu province, a hierarchical land cover classification system is adopted, which divides the whole country into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 secondary categories.It is the most accurate land use data product in China and has played an important role in national land resource survey, hydrological and ecological research.
0 2020-03-31
The dataset of intensive runoff observations was obtained by the cup type current meter (made in Chongqing Hydrological Instrument Factory) in the Binggou watershed foci experimental area from Jan. 17, 2008 to Dec. 31, 2009. Data directions included: (1) the regular observation before Mar. 14, 2008, once per day; the intensive observation from Mar. 15, 2008 to Apr. 1, 2008, 7-8 times per day and even hourly for some intensive observations (2) three times (9, 14 and 19 BJT) per day from May 3, 2008 to Sep. 17, 2008; from Sep. 17, 2008 on, two times (9 and 18 BJT) per day; the water runoff by evenly spaced method, 20cm, 40cm and 80cm based on different situations The data were named after WATER_Runoff_BG_yyyymmdd-yyyymmdd.csv (WATER_Runoff_BG for Ginggou, yyyymmdd-yyyymmdd for the observation time). The missing data were marked "None".
0 2019-05-23
Agricultural irrigation, which accounts for about 80% of human water consumption, is the most important part of human water resources management and closely related to human survival and development.Irrigation is also an important part of the water cycle. Large-scale irrigation can affect the water cycle and even the local climate by affecting evapotranspiration.Excessive diversion of irrigation water will lead to unsustainable utilization of water resources, and at the same time, will reduce river flow and aquifer water reserves, thus harming the ecological environment. Therefore, determining the spatial and temporal distribution and variation of irrigation is critical to studying past human water use, the impact of irrigation on ecological and hydrological processes, the environment and climate, and the development of future irrigation plans. By integrating the irrigation amount of channel diversion water and irrigation amount of groundwater intake from different data sources, and combining the evapotranspiration data of land surface model CLM4.5 simulation and remote sensing inversion, a set of spatio-temporal continuous surface water and groundwater irrigation amount data set with spatial resolution of 30 arcseconds (0.0083 degrees) on the scale of 1981-2013 in heihe river basin was made. It has been verified that this data set has a high reliability from 2000 to 2013, and a lower reliability from 1981 to 1999 than from 2000 to 2013 due to the absence of remote sensing data and the absence of soil utilization changes. The document is described as follows: Monthly surfacewater irrigation volume file name: monthly_surfacewater_irrigation gation_1981-2013.nc Monthly groundwater_irrigation gation_1981-2013.nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information.
0 2020-03-15
Soil survey data corresponding to the ejin delta and the ecological vegetation sample during the project implementation period. Soil profile sampling corresponding to the ecological vegetation survey in ejin delta (5), 20 cm stratified sampling.Investigation items included: soil salinity, soil organic matter, C, N, P, etc., time: August 2011.
0 2020-03-10
Water demand in the middle and lower reaches of Heihe River (mainly including water demand for living, livestock, industry, agriculture, tertiary industry, artificial forest and grass ecology in the middle reaches of Heihe River in current year, 2020 and 2030; water demand for living, industry, tertiary industry and ecology in Ejina Banner in the middle reaches of Heihe River in current year, 2020 and 2030)
0 2020-06-03
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn