• 黑河生态水文遥感试验:可见光近红外高光谱航空遥感(2012年6月29日)

    On 29 June 2012 (UTC+8), a CASI/SASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 3500 meters(an elevation of 3500 meters), The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.

    0 2019-09-13

  • 黑河生态水文遥感试验:水文气象观测网数据集(神沙窝沙漠站自动气象站-2013)

    This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Shenshawo sandy desert station between 1 September, 2012, and 31 December, 2013. The site (100.493° E, 38.789° N) was located on a desert surface in the Shenshawo, which is near Zhangye city, Gansu Province. The elevation is 1594 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction profile (020C; 10 m, north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data were missing during 31 March, 2013 and 26 July, 2013 because of the malfunction of rain gauge. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-15

  • 黑河流域多年月平均湿度(1961-2010)

    Based on the data information provided by the data management center of Heihe project, the daily humidity data of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national reference stations around Heihe River were collected and calculated. The spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly humidity distribution trend is obtained; if the coefficient of variation is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station humidity value and the geographical terrain factors (latitude, longitude, elevation, slope, aspect, etc.) The residual after removing the trend was fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average humidity distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average humidity for many years from 1961 to 2010. Spatial resolution: 500M.

    0 2020-03-28

  • 葫芦沟小流域监测河流断面流量及土壤和地下水温度监测数据(2014-2015年7-9月)

    The data includes the discharge data of the outlet river of No.2 catchment area of hulugou small watershed from July 24 to September 11, 2014 / 2015. Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment area, near the red wall, with coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. The soil temperature monitoring depth in hulugou is 20cm, 50cm, 100cm, 200cm and 300cm. The monitoring depth of groundwater temperature is 10m. The observation frequency is 1 time / 1 hour. The time range of observation data is from May 13, 2015 to September 5, 2015. Sampling location: the soil temperature monitoring point in hulugou small watershed is located in the middle of the Delta, with the geographic coordinates of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n.

    0 2020-07-30

  • Integrated hydrometeorological – snow – frozen ground observations in the alpine region of the Heihe River Basin, China

    Alpine region is an important contributor in riverine and watershed ecosystems, which supplies freshwater and stimulates specific habitats of biodiversity. In parallel, extreme events (such as flood, wildfire, early snowmelt, drought and etc.) and other perturbations may reformat the hydrological processes and eco-functions in the area. It is then critical to advance a predictive understanding of the alpine hydrological processes through data-model integration. However, several formidable challenges, including the cold and harsh climate, high altitude and complex topography, inhibit complete and consistent data collection where/when needed, which hinders the associated development of interdisciplinary research in the alpine region. The current study presents a suite of datasets consisted of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin (HRB) in China. Gap-free meteorological and hydrological data were monitored from the observation network connecting a group of automatic meteorological stations (AMSs), wireless sensors network (WSN) and runoff measurement spots. In addition, to capture snow accumulation and ablation processes, with the state-of-the-art techniques and instruments, snow cover properties were collected from a snow observation superstation. High-resolution soil physics datasets were also obtained to capture the freeze-thaw processes from a frozen ground observation superstation. The up-to-date datasets have been released to scientists with multidisciplinary backgrounds (i.e. cryosphere, hydrology, and meteorology) and expected to serve as a testing platform to provide accurate forcing data, validate and evaluate remote sensing data and distributed models to a broader community.

    0 2020-06-23

  • 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区机载LiDAR和Envisat ASAR地面同步观测数据集(2008年6月19日)

    The dataset of ground truth measurement synchronizing with the airborne LiDAR mission and Envisat ASAR was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 19, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 (Beijing Time). The observation item was soil moisture by TDR ( the probe with a length of 5cm) in the maize plot of Yingke oasis station, the wheat plot and some temporary sample points (details in GPS.txt).

    0 2019-09-12

  • 黑河生态水文遥感试验:黑河流域中游生态水文无线传感器网络WATERNET观测数据集(2012)

    This dataset includes soil moisture, soil temperature and land surface temperature observations of 50 WATERNET wireless sensor network (WSN) nodes during the period from May to September 2012, which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The WATERNET located in the 4×4 MODIS grids in the observation matrix in the Zhangye oasis. Each WATERNET node observes the soil moisture, soil temperature, soil conductivity and complex dielectric constant at 4 cm and 10 cm depths by the Hydra Probe II sensor. There are 29 nodes among the WATERNET with the SI-111 sensor at 4 m height to measure the surface radiance temperature. The operational observation interval is 10 minutes, and the intensive observation mode with 1 minute is activated during 00:00-04:30, 08:00-18:00 and 21:00-24:00 (UTC+8), in order to synchronize with airborne or satellite-borne remote sensors. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "WATERNET_Data_Document_HRBMiddle.docx”.

    0 2019-09-14

  • 黑河综合遥感联合试验:盈科绿洲与临泽草地加密观测区叶绿素含量观测数据集

    The dataset of chlorophyll content observations was obtained in the Yingke oasis and Linze grassland foci experimental areas. Observation items included: (1) Chlorophyll content synchronizing with TM in Yingke oasis No. 1, 4 and 5 maize plots on May 20, 2008. (2) Chlorophyll content synchronizing with ASTER and MODIS in Linze grassland foci experimental areas on May 24, 2008. (3) Chlorophyll content synchronizing with ASTER and MODIS in Yingke oasis maize field on May 28, 2008. (4) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on May 30, 2008. (5) Chlorophyll content synchronizing with OMIS-II in Yingke oasis maize field on Jun. 16, 2008. (6) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on Jun. 29, 2008. (7) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) and TM in Yingke oasis maize field on Jul. 7, 2008. (8) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on Jul. 11, 2008.

    0 2019-05-23

  • 黑河综合遥感联合试验:阿柔冻融观测站自动气象站数据集(2007-2015)

    The dataset of automatic meteorological observations was obtained at the A'rou freeze/thaw observation station from Jul. 25, 2008 to Dec. 31, 2009, in Wawangtan pasture (E100°28′/N38°03′, 3032.8), Daban, A'rou. The experimental area, situated in the valley highland of south Babaohe river, an upper stream branch of Heihe river, with a flat and open terrain slightly sloping from southeast to southeast and hills and mountains stretching for 3km is ideal for a horizontal homogeneous underlying surface. Observation items included multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.

    0 2019-09-14

  • 黑河生态水文遥感试验:水文气象观测网数据集(阿柔超级站气象要素梯度观测系统-2016)

    The data set contains data from January 1, 2016 to December 31, 2016 from the meteorological element gradient observation system of alou superstation, upstream of the heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The air temperature, relative humidity and wind speed sensors are located at 1m, 2m, 5m, 10m, 15m and 25m respectively, with a total of six layers facing due north.The wind direction sensor is located at 10m, facing due north;The barometer is installed at 2m;The tilting bucket rain gauge is installed on the observation tower 40m of super aru station;The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are installed at 5m, facing due south, and the probe facing vertically downward.The photosynthetic effective radiometer is installed at 5m, facing due south, and the probe facing vertically upward.Part of the soil sensor is buried at 2m in the south direction of the tower body, and the soil heat flow plate (self-correcting formal) (3 pieces) are all buried at 6cm underground.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at the surface of 0cm and underground of 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm, among which the 4cm and 10cm layers have three repeats.The soil water sensor is buried underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, among which the 4cm and 10cm layers have three duplexes. The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Sensor problem of soil heat flux G1 between December 8, 2016 and December 16, 2016, data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-6-10-10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-04-10