• 藏东南高山环境综合观测研究站气象观测数据(2007-2017)

    This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.

    0 2020-01-10

  • 黑河生态水文遥感试验:水文气象观测网数据集(花寨子荒漠站自动气象站-2014)

    The data set contains the observation data of meteorological elements from the Huazhaizi Desert Steppe Station,,which is located along the middle reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2014 to December 31, 2014. The station is located in Huazhaizi of Zhangye, Gansu Province. The underlying surface is piedmont desert. The latitude and longitude of the observation point is100.3186E, 38.7652N, and the altitude is 1731m. The observation instruments in Huazhaizi are installed respectively by Beijing Normal University and Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The observation instruments of Beijing Normal University are: two infrared thermometers installed 24 meters above the ground, facing south, with the probe vertical downward; soil temperature probes buried respectively at 0cm on the ground surface, 2cm、4cm、20cm、60cm and 100cmunder the ground; soil moisture sensors buried 4cm、20cm and 100cm under the ground; soil heat flow boards (3 pieces) buried 6cm under the ground. The observation instruments of Cold and Arid Regions Environmental and Engineering Research Institute are: wind speed sensor erected 10.48m、0.98m and 2.99m above the ground(3 layers),facing North; wind direction sensor erected 4 meters above the ground; air temperature and relative humidity sensors erected 1m and 2.99m above the ground(2 layers),facing North East; four-component radiometer installed 2.5 meters above the ground, facing South; barometric pressure sensor placed in the water-proof box; tipping bucket rain gauge installed 0.7 meter above the ground; soil temperature probes buried 4cm、10cm、18cm、26cm、34cm、42cm and 50cmunder the ground; soil moisture sensors buried 2cm、10cm、18cm、26cm、34cm、42cm、50cm and 58cm under the ground, 3 sensors buried at 2cm. The specific observation elements are as follows: (1) Observation elements of Beijing Normal University : surface radiation temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil moisture (Ms_4cm, Ms_20cm, Ms_100cm) (unit: percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_20cm, Ts_60cm, Ts_100cm) (unit: Celsius). (2) Observation elements of Cold and Arid Regions Environmental and Engineering Research Institute: wind speed (WS_0.48m, WS_0.98m, WS_2.99m) (unit: m/s), wind direction (WD_4m) (unit: degree), four-component radiation (DR, UR , DLR_Cor, ULR_Cor) (unit: watt / square meter), air temperature and humidity (Ta_1m, Ta_2.99m, RH_1m, RH_2.99m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (unit: mm), soil temperature (Ts_4cm, Ts_10cm, Ts_18cm, Ts_26cm, Ts_34cm, Ts_42cm, Ts_50cm) (unit: Celsius), soil moisture (Ms_2cm_1, Ms_2cm_2, Ms_2cm_3, Ms_10cm, Ms_18cm, Ms_26cm, Ms_34cm, Ms_42cm, Ms_50cm, Ms_58cm) (unit: volumetric water content, percentage). The observation elements of Beijing Normal University are 10-minute average data, and the observation elements of Cold and Arid Regions Environmental and Engineering Research Institute are 30-minute average data. Processing and quality control of observation data: (1) Ensure 144 data of Beijing Normal University per day (every 10 minutes), and 48 data of Cold and Arid Regions Environmental and Engineering Research Institute per day (every 30 minutes). If there is missing data, it is marked as -6999. Data between 12.11-12.31,2014 is missing due to storage problems. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2014-6-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

    0 2019-09-11

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(4号点自动气象站)

    This dataset contains the automatic weather station (AWS) measurements from site No.4 in the flux observation matrix from 10 May to 17 September, 2012. The site (100.35753° E, 38.87752° N) was located in a residential area in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1561.87 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020C; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-13

  • 黑河生态水文遥感试验:水文气象观测网数据集(2号点-312桥径流观测数据-2014)

    The data set includes the observation data of river water level and velocity at No.2 point in the runoff densification observation of the middle reaches of Heihe River from January 1, 2014 to December 31, 2014. The observation point is located in Heihe bridge, 312 National Road, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation points are N38 ° 59 ′ 51.71 ″, E100 ° 24 ′ 38.76 ″, with an altitude of 1485 meters, and a channel width of 70 meters and 20 meters. Sr50 ultrasonic range finder is used for water level observation, with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to December 31, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The section of bridge no.2-312 is frequently disturbed by human beings, and the unstable area of hydrological section leads to the disorder of water level and flow curve. During the measurement, the stable flow and water level curve cannot be obtained. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.

    0 2020-03-14

  • 黑河生态水文遥感试验:水文气象观测网数据集(巴吉滩戈壁站涡动相关仪-2013)

    This dataset contains the flux measurements from the Bajitan Gobi station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 18 September, 2012, to 31 December, 2013. The site (100.304° E, 38.915° N) was located in the Gobi surface, near Zhangye city in Gansu Province. The elevation is 1562 m. The EC was installed at a height of 4.6 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 22 May to 13 June, 2013 were missing due to malfunction of data logger. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2020-04-10

  • 葫芦沟流域地下水位数据集(2013)

    1. Data overview: This data set is the groundwater level data of qilian station from January 1, 2013 to December 31, 2013.Well no. 1 is located at the side of the general controlled hydrologic section of the cucurbitou basin, with a depth of 12.8m and an aperture of 12cm.The second well is located to the east of the delta about 100m away from the river. The depth of the well is 14.7m and the aperture is 12cm. 2. Data content: U20-hobo water level sensor is installed in the underground well, which is mainly used to monitor the groundwater level changes in the small gourgou watershed. The data are daily scale data. 3. Space and time range: Geographical coordinates of well no. 1: longitude: longitude: 99° 53’e;Latitude: 38°16 'N;Elevation: 2974m (near the hydrological section at the outlet of the basin). Geographical coordinates of well no. 2: longitude: 99° 52’e;Latitude: 38°15 'N;Altitude: 3204.1m (east of the eastern branch of the delta).

    0 2020-03-11

  • 黑河综合遥感联合试验:中游干旱区水文试验区和森林水文试验区土地利用土地覆盖调查数据集

    The dataset of land use and land cover investigation was obtained in the arid region hydrology and forest hydrology experiment areas. It included: (1) Land cover investigations in Linze grassland, Yingke oasis, Huazhaizi desert, Dayekou watershed and Zhangye city from May 27 to 31, 2008. GPS data, photos and detailed descriptions were recorded. (2) Land use and land cover investigations in Yingke oasis, Huazhaizi desert and Biandukou foci experimental areas on Jul. 7, 8, 10, 11, 12, 13, 14 and 15, 2008. Data were archived in shapefile, spreadsheet or JPGE formats.

    0 2019-05-23

  • 黑河流域蓝绿水时空分布

    1. Data overview: this data is the blue and green water data of Heihe River Basin simulated by SWAT model; 2. Data content: data mainly includes blue-green water and green water coefficient of the whole basin and each sub Basin; 3. Spatial and temporal scope: the data time is from 1975 to 2004, and the spatial scope includes 34 sub basins and the whole Heihe River Basin; 4. Data file: the relevant data is placed in the Swat folder, including the sub_basin folder (sub basin distribution map), "blue and green water of the whole Heihe River Basin" folder and "blue and green water of each hydrological response unit of the Heihe River Basin" folder.

    0 2020-02-22

  • 黑河生态水文遥感试验:黑河下游Li-8100观测土壤呼吸数据集(2014年7月-8月)

    Soil respiration observation was carried out for the typical vegetation ground in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 23 July, 2014 and finished on 2 August, 2014. 1. Observation time Days from 23 July to 2 August, 2014 (25 July, 2014 excepted) 2. Samples and observation methods Large areas with relatively homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And combined the flux tower sites distribution of the lower reaches, five field samples closed to the sites were selected The observation sites sampled including Populus and Tamarix mixed forest, Populus, Tamarix group, bare ground and melon quadrats. 3-5 plots were observed for each samples. The PVC soil rings were installed one day before observation and kept about 5 cm out of the ground (the inner diameter of the PVC is 19.5 cm, the outer diameter is 20.0 cm, and the height is 12.0 cm). Minimal the effects to the surface of vegetation and withered matter when install the rings. In order to avoid fluctuations of the soil respiration value by the PVC rings, soil respiration rate was obtained when it returned to its original state (about 24h after the rings install). The observation time for each day was from 8:00 to 12:00 when soil respiration is relatively stable and can represent the whole day in this time. The Li-8100 Open Path soil carbon flux automatic analyzer was used (Model 8100-103) once for each plot. Cycles of observation for all plots of the five samples were completed for every morning. The soil respiration values of the samples were obtain by averaging the values of plots of the samples. 3. Observation instrument Li 8100 4. Data storage The observation recorded data were stored in excel and the original Soil respiration data were stored in 81x files.

    0 2019-09-14

  • 黑河流域生态水文综合地图集:黑河流域在全国中的位置

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The location map of Heihe River Basin in the whole country is one of the basic geographic chapters of atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data sources: 1:250000 China administrative division data, 1:250000 main rivers and lakes data, and Heihe River basin boundary data.

    0 2020-03-05