The data set of atmospheric water vapor absorption and utilization of desert plants, all of which are original data, including the liquid flow and environmental data of wild desert plants (Sitan village and Ejina Banner, Jingtai County), such as Tamarix, Bawang, Baici, Hongsha, etc., including the data of meteorology, photosynthesis, fluorescence and leaf surface humidity, as well as the data of gene transcriptome and expression regulation.
0 2020-07-31
The third pole 1:100,000 range data set includes:Mountains(Tibet_Mountains)vector space data set and its attribute name:Name(Name)、Countries Name(CNTRY_NAME)、Countries Referred to as(CNTRY_CODE)、Latitude(LATITUDE)、Longitude(LONGITUDE). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface
0 2020-05-28
The medium-resolution MODIS river and lake ice phenology data set in the high latitudes of the northern hemisphere from 2002 to 2019 is based on the Normalized Difference Snow Index (NDSI) data of the Moderate Resolution Imaging Spectroradiometer(MODIS). Daily lake iceextent and coverage under clear-sky conditions was examined byemploying the conventional SNOWMAP algorithm, and thoseunder cloud cover conditions were re-determined using the temporal and spatial continuity of lake surface conditions througha series of steps.The lake ice phenology information obtained in this dataset was highly consistent with that from passive microwave data at an average correlation coefficient of 0.91 and an RMSE value varying from 0.07 to 0.13.
0 2020-08-05
The dataset of vegetation cover fraction observations was obtained by the self-made instrument and the camera at a height of 2.5m-3.5m above the ground in the Yingke oasis, Huazhaizi desert steppe and Biandukou foci experimental areas on May 20, 24, 25, 28 and 30, Jun. 11, 14, 15, 21, 23, 24, 27 and 30, and Jul. 2, 2008. Observations were carried out in Yingke oasis maize field, Yingke oasis wheat field, Huazhaizi desert No. 1 and 2 plots, the rape field, the barley field and grassland in Biandukou. A pole with known length was put in each photo to determine the size of the photo. GPS data was used for the location and the technology LAB was used to retieve the coverage of the green vegetation. Besides, surrounding environment was also recorded. The dataset included the primary collected vegetation images and retrieved fraction of vegetation coverage.
0 2019-09-13
This dataset contains the flux measurements from the Huazhaizi desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 24 September, 2012, to 31 December, 2013. The site (100.319° E, 38.765° N) was located in the desert steppe surface, near Zhangye city in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 2.85 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Due to the malfunction of data logger in July, the 10 Hz data were missing, and data during this period were replaced by the 30 min data logger output data. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-14
The data is a dataset of rivers in the Tarim River Basin. It is revised according to topographic maps and TM remote sensing images. The scale is 250,000. The data includes spatial data and attribute data. The attribute data fields are: HYD_CODE (river code), Name (river name), SHAPE_leng ( River length).
0 2020-03-31
Data Overview: The spatial distribution data of mining wells in Zhangye City are provided by Zhangye Municipal Water Affairs Bureau, including 6,228 mechanized wells in agriculture, industry, forestry, life, scientific research and other 6 types. Data acquisition process: Zhangye Municipal Water Affairs Bureau entrusts the Hydrogeological Engineering Geological Survey Institute of Gansu Provincial Bureau of Geology and Mineral Resources to be responsible for special investigation of the data of mining wells in Zhangye City. The special survey of mining wells takes the irrigation area as a unit, uses hand-held GPS to locate the coordinates of the wells, and establishes the information card of mining wells through investigation and visit. A total of 7,429 eyes of various wells were surveyed. Among them, 6228 mining wells are still in use; 1201 wells were abandoned at the time of investigation. Description of data content: The attribute table contains information of mining well number, coordinates, location, water intake purpose, mining well type, well depth at the time of investigation, pumping flow, annual mining volume, rated flow, quality evaluation, matching quality evaluation and comprehensive quality evaluation fields.
0 2020-03-14
The forest hydrology experimental area of Heihe River integrated remote sensing experiment includes the dense observation area of Dayekou basin and the dense observation area of Pailugou basin. Due to the concentrated distribution of the fixed sample plots in the drainage ditch basin, these sample plots lack of representativeness to the forest of the whole dayokou basin, so in June 2008, 43 temporary forest sample plots were set up in the whole dayokou basin. The data set is the ground observation data of the 43 temporary plots. In addition to the measurement and recording of stand status and site factors, Lai was also observed. The instruments used to measure each wood in the sample plot are mainly tape, DBH, flower pole, tree measuring instrument and compass. The DBH, tree height, height under branch, crown width in cross slope direction, crown width along slope direction and single tree growth were measured for each tree. WGS84 latitude and longitude coordinates of the center point of the sample plot were measured with different hand-held GPS, and the positioning error was about 5-30m. Other observation factors include: Forest Farm, slope direction, slope position, slope, soil thickness, canopy density, etc. The implementation time of these temporary sample plots is from 2 to 30 June 2008. The data set can provide ground data for the development of remote sensing inversion algorithm of forest structure parameters.
0 2020-08-20
The dataset of ground-based RPG-8CH-DP microwave radiometers (6.925H/V, 18.7H/V and 36.5H/V) and ground truth observations for snow was obtained in the Binggou watershed foci experimental area on Mar. 24 (time-continuous from 11:42 to 17:28 BJT) and Mar. 25, 2008 (short-time multi-angle observations). A gentle slope of 10° was chosen as the observation site, where there was firn snow and the snow layer and the ice layer appeared alternately. The radiometer beam was set from -20° to -55°, with the steplength 5°. Observation items included: (1) The brightness temperature by the microwave radiometer in .BRT and .txt (the ASCII format). Each row in .txt was listed by year, month, date, hour, minute, second, 6.925GHz (h), 6.925GHz (v), 10.65GHz (h), 10.65GHz (v) , 18.7GHz (h), 18.7GHz (v), 36.5GHz (h), 36.5GHz (v), the elevation angle, and the azimuth angle. Values for 6.925GHz and 10.65GHz were zero due to the absence of these two radiometers. (2) Snow parameters including the snow profile temperature by the probe thermometer and the handheld infrared thermometer, the snow grain size by the handheld microscope, snow moisture, snow density, and snow permittivity by the snow fork. Five subfolders are archived, including the brightness temperature and the profiles of liquid water content, the snow grain size, snow density and the snow temperature.
0 2019-09-11
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao barren-land station between 9 July, 2013, and 31 December, 2013. The site (101.133° E, 41.999° N) was located on a barren-land surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 878 m. The installation heights and orientations of different sensors and measured quantities were as follows: four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (AV-10T; 0, -0.02 and -0.04 m). The observations included the following: four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 24 September, 2013 and 26 September, 2013 because of the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
0 2019-09-15
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn