The dataset of ground truth measurements for snow synchronizing with MODIS was obtained in the Binggou watershed foci experimental area on Mar. 19, 2008. Those provide reliable data for retrieval and verification of the snow temperature through airborne and satellite-borne remote sensing approaches. Observation items included: (1) Snow parameters, such as snow depth by the ruler (five measurements at random each point), the snow surface temperature by the infrared thermometer (several measurements at random), the snow layer temperature by the probe thermometer (10cm as an interval and two times each point), the snow grain size by the handheld microscope (10cm as an interval and three times each point) in BG-B from 12:40-13:00 (BJT) with the satellite overpass on Mar. 19, 2008. 64 points were selected by four groups. (2) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A,automatically in coordination with ASD. (3) The snow spectrum by the portable ASD. (4) Snow albedo by the portable radiometer in BG-A. Two files including raw data and preprocessed data were archived.
0 2019-05-23
The data came from the badain jilin 1:500,000 wind-sand landform data set compiled by the desert research institute of the Chinese academy of sciences (now the institute of cold and drought of the Chinese academy of sciences. The dataset mainly includes :dimao(landform),height(dune height),lake(lake),lvzhou(oasis), river(river), road (road).
0 2020-03-10
The 30 m / month synthetic leaf area index (LAI) data set of Heihe River basin provides the monthly Lai synthetic products from 2011 to 2014. This data uses the domestic satellite HJ / CCD data with high time resolution (2 days after Networking) and spatial resolution (30 m) to construct the multi angle observation data set. Considering the impact of surface classification and terrain fluctuation, the algorithm is selected according to the characteristics of different vegetation types Choosing a suitable parameterization scheme of integrated model, inversion Lai based on look-up table method. The remote sensing data acquired every month can provide more angles and more observations than the single day sensor data, but the quality of multi-phase and multi angle observation data is uneven due to the difference of on orbit operation time and performance of the sensor. Therefore, in order to effectively use multi temporal and multi angle observation data, a data quality inspection scheme is designed. Using the Lai ground observation data of 9 forest quadrats, 20 farmland quadrats and 14 savanna quadrats from dayokou area in the upper reaches of Heihe River and Yingke and Linze areas in the middle reaches to verify the Lai in July, the inversion results are in good agreement with the measurement results, and the average error is less than 1; in addition, the Lai inversion results of the combined multi temporal and multi angle observation data are in good agreement with the ground measurement data (R2=0.9,RMSE=0.42)。 In a word, the 30 m / month synthetic leaf area index (LAI) data set of Heihe River Basin comprehensively uses multi temporal and multi angle observation data to improve the estimation accuracy and time resolution of parameter products, so as to better serve the application of remote sensing data products.
0 2020-03-13
The land use / land cover data set of Heihe River Basin in 2011 is the Remote Sensing Research Office of Institute of cold and drought of Chinese Academy of Sciences. Based on the remote sensing data of landsatm and ETM in 2011, combined with field investigation and verification, a 1:100000 land use / land cover image and vector database of Heihe River Basin is established. The data set mainly includes 1:100000 land use graph data and attribute data in the middle reaches of Heihe River Basin. The land cover data of 1:100000 (2011) in Heihe River Basin and the previous land cover are classified into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural residents, industrial and mining land and unused land) and 25 second-class categories by the same hierarchical land cover classification system. The data type is vector polygon and stored in shape format. Land cover classification attributes: Level 1 type level 2 type attribute code spatial distribution location Cultivated land: plain dry land 123 is mainly distributed in basin, piedmont, river alluvial, proluvial or lacustrine plain (poor irrigation conditions due to water shortage). The upland and land 122 is mainly distributed in the hilly area, and generally, the plot is distributed on the gentle slope of the hill, as well as on the top of the ridge and the base. The dry land 121 is mainly distributed in the mountainous area, the hillside (gentle slope, hillside, steep slope platform, etc.) and the Piedmont belt below 4000 m above sea level. Woodland: there are woodland (Arbor) 21 mainly distributed in high mountains (below 4000 meters above sea level) or middle mountain slopes, valley slopes, mountain tops, plains, etc. Shrub land 22 is mainly distributed in the higher mountain area (below 4500m), most of which are hillside, valley and sandy land. Sparse forest land 23 is mainly distributed in mountainous areas, hills, plains and sandy land, Gobi (Loamy, sandy conglomerate) edge. Other forest lands 24 are mainly distributed around the oasis ridge, riverside, roadside and rural residential areas. Grassland: high cover grassland 31 is generally distributed in mountainous area (gentle slope), hilly area (steep slope), river beach, Gobi, sandy land, etc. The middle cover grassland 32 is mainly distributed in dry areas (low-lying land next door and land between Sandy Hills, etc.). Low cover grassland 33 mainly grows in dry areas (loess hills and sand edge). Water area: channel 41 is mainly distributed in plain, inter Sichuan cultivated land and inter mountain valley. Lake 42 is mainly distributed in low-lying areas. Reservoir pond 43 is mainly distributed in plain and valley between rivers, surrounded by residential land and cultivated land. Glaciers and permanent snow cover 44 are mainly distributed on the top of (over 4000) mountains. The beach land 46 is mainly distributed in the valley, piedmont, plain lowland, the edge of river lake basin and so on. Residential land: urban land 51 is mainly distributed in plain, mountain basin, slope and gully platform. Rural residential land 52 is mainly distributed in oasis, cultivated land and roadside, tableland, slope, etc. Industrial and mining land and traffic land 53 are generally distributed in the periphery of cities and towns, more developed traffic areas and industrial mining areas. Unused land: sand 61 is mostly distributed in the basin, both sides of the river, the river bay and the periphery of the mountain front Gobi. Gobi 62 is mainly distributed in the Piedmont belt with strong wind erosion and sediment transport. Salt alkali 63 is mainly distributed in relatively low and easy to accumulate water, dry lakes and lakeside. Swamp 64 is mainly distributed in relatively low and easy to accumulate water. Bare soil 65 is mainly distributed in the arid areas (mountain steep slopes, hills, Gobi), and the vegetation coverage is less than 5%. Bare rock 66 is mainly distributed in the extremely dry stone mountain area (windy, light rain). The other 67 are mainly distributed in the exposed rocks formed by freezing and thawing over 4000 meters, also known as alpine tundra. Projection parameters: Projection ALBERS Units METERS Spheroid Krasovsky Parameters: 25 00 0.000 /* 1st standard parallel 47 00 0.000 /* 2nd standard parallel 105 00 0.000 /* central meridian 0 0 0.000 /* latitude of projection's origin 0.00000 /* false easting (meters) 0.00000 /* false northing (meters)
0 2020-07-28
The super sample plot is composed of 16 sub samples. In order to locate each tree in the sample plot and facilitate the location of the base station point for ground-based radar observation, it is necessary to measure the geodetic coordinates of the sub sample plot corner point and the preset base station point for ground-based radar. The location of these points and each tree is measured by total station. Because the total station measures relative coordinates, in order to obtain geodetic coordinates, it is necessary to use differential GPS (DGPS) to measure at least one reference point around the super sample plot with high precision. In addition, we also use DGPS to observe the geodetic coordinates of all corner points of the subsample, and the measurement results can form the verification of the total station measurement results. The data set is based on all the positioning results measured by DGPS, excluding the positioning results of total station. The measurement time is from June 1 to 13, 2008, using the French Thales differential GPS measurement system, model z-max. The observation method is to use two GPS receivers for synchronous static measurement, one is the base station, which is set next to Gansu Water Conservation Forest Research Institute (the WGS geodetic coordinate of the base station is a first-class benchmark introduced from Zhangye City through multi station observation using z-max). The other is the mobile station, which is placed on the observation point of super sample plot. The observation time of each point varies from 10, 15, 20, 25, 30 minutes. The specific time depends on the satellite signal. The signal difference time is measured for several minutes more. Finally, the final positioning result is obtained by using the processing software of the instrument. WGS geodetic coordinate system is used for the positioning results. Firstly, six temporary control points were measured in the open area next to the super sample plot, providing reference points for the total station to measure the position of trees in the super sample plot. Then, flow stations were set up on each corner of 16 sub plots of super plot, and the coordinates of corner points were measured, and 41 observation points were obtained. The dataset stores the positioning results of these 47 points. This data is only for project use and not for external sharing.
0 2020-03-09
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands, between 8:06~11:17BJT) and thermal imager mission (between 12:48~16:35BJT) was obtained in L2, L3, L4, L5 and L6 of the A'rou foci experimental area on Apr. 1, 2008. The samples were collected every 100m along the strip from south to north in the the morning and from north to south in the afternoon. In L2, L4 and L6, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L3, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were acquired by WET, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Besides, the handheld thermal imager observations were carried out in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches. Seven files were included, two ground-based microwave radiometers (L&K-band and L-band) observations, L2 data, L3 data, L4 data, L5 data and L6 data.
0 2019-05-23
The annual ring is the main technical means for carrying out the variance analysis, and it is also one of the methods to establish the expansion of water consumption time of plant transpiration. In 2001, this project sampled 60 Populus euphratica in Ejin Oasis and measured the age and ring width index.
0 2019-09-15
The data set contains all single glacial reserves (in KM3) in the Tibetan Plateau of 1970s and 2000s. This data set comes from the result data of the paper entitled "consolidating the Randolph glacier inventory and the glacier inventory of China over the Qinghai titanium plate and investigating glacier changes since the mid-20th century". The first draft of this paper has been completed and is planned to be submitted to earth system science data. The 1970s basic glacier catalog data in the dataset is extracted from Randolph glacier Inventory data set, 2000s basic glacial catalogue is from China's second glacial catalogue data set. Based on the glacial boundary extracted from the two data sets and combined with the grid based bedrock elevation data set (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m) and the glacial table obtained by a slope dependent method Based on the surface elevation data set, the single glacier reserves in the two catalogues are calculated. In addition, the calculation results of single glacier reserves obtained in this study have been compared and verified with the calculation results of partial glacier reserves, relevant remote sensing data sets, and the global glacier thickness data set based on the average of multiple glacier model sets in multiple directions, and the errors in the calculation results have also been quantified. The establishment of the data set is expected to provide the data basis for the future regional water resources estimation and glacier ablation research, and the acquisition of the data also provides a new idea for the future glacier reserves research.
0 2020-04-14
A typical Shaker type potassium ion absorption channel gene AmKAT1 was cloned from the leaves of Ammopiptanthus mongolicus. Electrophysiological studies of AmKAT1 show that AmKAT1 is a K+ absorption channel regulated by potassium ion concentration. the system can only input K+ into guard cells when the extracellular potassium ion concentration is high (above 10 mmol/L). This distinctive feature has important physiological significance for xerophytes such as Ammopiptanthus mongolicus: under the condition of low concentration of extracellular potassium ions (no matter how high the concentration of sodium ions), AmKAT1 is difficult to open, potassium ions cannot enter guard cells, the guard cells will not absorb water and expand, and stomata will be difficult to open, thus reducing the transpiration and loss of water in Ammopiptanthus mongolicus and enhancing the viability of Ammopiptanthus mongolicus in arid environment. We have further studied the mechanism of extracellular potassium ion regulating the activity of AmKAT1 and found that at least two sites in AmKAT1 are involved in potassium ion induction, and now one site has been determined to be located in the channel pore region. In addition, we cloned a guard cell export-oriented K+ channel AmGORK and a slow anion channel AmSLAC1. Fluorescence quantitative PCR results showed that AmGORK was mainly expressed in the upper part of the ground, and its transcription level was affected by PEG simulated water stress, ABA, NaCl and osmotic stress treatments to varying degrees. Electrophysiological studies in xenogeneic system of Xenopus laevis oocytes show that AmGORK channel of Mongolian Ammopiptanthus mongolicus guard cells can mediate efficient efflux of K+ when membrane potential is depolarized. The activation of this channel has typical voltage dependence and potassium ion concentration dependence, and is inhibited by potassium ion channel inhibitors TEA and Ba2+; In addition, the activity of AmGORK is regulated by extracellular pH, but not by extracellular calcium concentration. These results show that although Ammopiptanthus mongolicus is an ancient drought-resistant leguminous shrub originated millions of years ago, it is highly similar to the existing common model plant Arabidopsis thaliana in the stomatal closure mechanism dominated by K+. These results provide evidence to preliminarily reveal the functional conservatism of GORK-like stomatal regulatory channels in different species and long-term evolution.
0 2020-07-28
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn