The dataset of Antarctic mountains(1:1000000) includes vector spatial distribution data and some related attribute data: Name, Country name of the mountains , Country abbreviation, Latitude、 Longitude The data comes from the ADC World Map(1:1000000) global dataset, the data is topological, and it is the comprehensive, latest and seamless geographic digital data. The world map coordinate system is the latitude and longitude, WGS84 datum, and the Antarctic data set is the South Pole Stereographic.
0 2019-09-12
The dataset of surface roughness measurements was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area during the pre-observation period. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included. With the roughness grid board 110cm long and the measuring intervals of 1cm, the samples were collected along the soil surface from south to north and from east to west, respectively. The coordinates of sample points would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The roughness data files were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking. Those provide reliable ground data for improving and verifying the microwave remote sensing algorithms.
0 2019-05-23
Soil particle size data: clay, silt and sand data of different sizes in sample plots (alpine meadow and grassland); soil moisture: soil moisture content.
0 2020-08-02
The No. 3 hydrological section is located at Railway Heihe River Bridge (100.430° E, 39.043° N, 1443 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.3 hydrological section from 14 June, 2012, to 31 December, 2013. The width of this section is 50 meters. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameter: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
0 2019-09-12
The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.
0 2020-06-24
The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 1980-2010. The data included precipitation, evapotranspiration, runoff depth, and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.
0 2020-03-08
The fractional vegetation cover observation was carried out for the typical underlying surface in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples method Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the low reaches. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. 3. Observation methods 3.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 3.2 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the Tamarix chinensisi and reeds. For the Tamarix chinensisi and reeds, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other vegetation , the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 3.3 Method for calculating the FVC The detail method of the FVC calculation can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 4 Data storage The observation recorded data were stored in excel and the original FVC data were stored in photos.
0 2019-09-12
This data set contains meteorological element observation data from January 1, 2015 to September 9, 2015 from the aruyangpo station, upstream of heihe hydrometeorological observation network.The station is located in yangpo, north of ahrou township, qilian county, qinghai province.The latitude and longitude of the observation point is 100.5204E, 38.0898N and 3529m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;Two photosynthetically active radiators were installed at 6m, facing due south, and one probe was vertically upward and downward.The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:(unit: Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (in micromol/m2 seconds). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the damage of wind direction sensor, data was missing between July 2015 and September 2015;The station was demolished after September 9;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
0 2020-04-10
The dataset of albedo observations was obtained by the shortwave radiometer (1#: CMP3-060580 and 2#: CMP3-060584 from Institute of Remote Sensing Applications) in the arid region hydrology experiment area from May 20 to Jul. 14, 2008. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, Landsat TM, ASTER, Hyperion and CHRIS. Observation items included: (1) Albedo in Yingke oasis and Huazhaizi desert steppe foci experimental area. Yingke maize field was measured on May 28 and 30, Jun. 3, 16, 20, 27 and 29, Jul. 11 and 14, 2008, Yingke wheat field on May 20 and 29, Jun. 1, 4, 6, 9, 15 and 24, Jul. 7 and 14, 2008, Huazhaizi desert No. 2 plot on Jun. 14, 22 and 30, 2008 and the flax field on Jun. 23, 2008. (2) Albedo in Linze foci experimental area. Maize was measured on May 25, 2008 and desert and alfalfa on May 24, 2008. (3) Albedo in Biandukou foci experimental area. The rape field, the grassland and the barley were measured on Jun. 24, 2008, and barley on Jul. 6, 2008. (4) Zhangye intensive experimental area. The intra-city grassland and the roof of Jingdu Hotel were measured on May 27, 2008. Besides the shortwave radiometer, the digital multimeter (UNIT) was also used for voltage measuring. Raw data were archived in paper forms and Excel after input into the computer. Besides, shorter plants were chosen for measurements as the platform was not high enough. And the distance between the probe and the plant was shorter during the later observation period.
0 2019-05-23
The dataset of the albedo measurements was obtained by the shortwave radiometer (KippZonen CMP3, 310nm-2800nm, 1m above the ground) in the Linze station foci experimental area. Sand, psammophyte and withered annual herbs in A9 of the south-north desert strip and LY07, and flax, maize and tomatoes in Linze station were measured on May 28, Jun. 5, 6, 15, 22, 25, 30 and Jul. 4, 2008. Voltage was measured manually by the digital multimeter (UNIT) at intervals of 2 minutes for albedo from May 28 to Jun. 22; self-recording Campbell CR1000 was used at intervals of 1s from Jun. 25 to Jul. 4. TIMESTAMP (observation time), SOLAR_UP_AVG (downward shortwave radiation), SOLAR_DOWN_AVG (upward shortwave radiation), SOLAR_NET_AVG (net radiation)= SOLAR_UP_AVG - SOLAR_DOWN_AVG, albedo_Avg (albedo) = SOLAR_DOWN_AVG / SOLAR_UP_AVG, batt_volt_Min (voltage), and ptemp (CR1000 temperature) were all recorded. Manual data were archived as Excel files and the self-recording data in .dat, which were processed into Excel.
0 2019-05-23
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn