The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.
0 2020-07-31
This dataset was acquired on May 25, 2008 by the L&K-band airborne microwave radiometer at the Linze-Biandukou flight area.The L-band frequency is 1.4 GHz, the rear view is 35 degrees, and the dual-polarization (H and V) information is obtained; the K-band frequency is 18.7 GHz, with zenith angle observation, and there is no polarization information. The plane took off from Zhangye Airport at 9:51 (Beijing time, the same below) and landed at 15:01. The observation from 10:10 to 12:30 was in the Linze area, the flight altitude is about 1800m, and the flight speed is about 250km/hr. The plane flew low over Linze Reservoir from 12:31 to 12:38. The plane works in the Bianduko aerophotography region from13:13 to 14:35, the flight altitude is about 3000m, and the flight speed is about 250km/hr. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are all from non-imaging observation, the digital values obtained from instantaneous observation are recorded by text files, the longitude and latitude of flight and the attitude parameters of aircraft are recorded by GPS data. At the same time, through the respective clock records of the microwave radiometer and GPS, the microwave observation can be linked with the GPS record, and the microwave observation can be matched with the geographical coordinate information. Due to the relatively low resolution of the microwave radiometer, the leeway, welter and pitching of the aircraft are generally neglected in data processing. According to the target of use and relative flight altitude (H), after calibration and coordinate matching, the observation information can be rasterized. The resolution (x) of the L and K bands can be considered consistent with the observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24H. After the above steps, products that can be directly used by users can be obtained.
0 2019-07-20
A small lysimeter was made to simulate the natural conditions and select typical desert plants as the objects to study the water consumption of drought stress treatment. Repeat 3 times for each plant. In 2012, the soil water content was kept at (20 ± 5)% of the field water capacity, and experiments on physiological water demand and water consumption were carried out under stress. In 2013, the soil water content was kept at (10 ± 3)% of the field water capacity, and further experiments on water consumption and water consumption law were carried out under drought stress.
0 2020-03-12
Arctic administrative boundary data sets include Arctic_National, Arctic_Provincial, and Arctic_Prefecture vector spatial data sets of arcti-bound countries and Its corresponding name, TYPE related attribute data :(LOCAL_NAME), (ENG_NAME), (CNTRY_NAME), (TYPE), (CNTRY_CODE), (CONTINENT) The data comes from the 1:1,000,000 ADC_WorldMap global data set, which is a comprehensive, up-to-date and seamless geographic digital data. The world map coordinate system is latitude and longitude, WGS84 datum surface, and the arctic data set is the special projection parameter for the arctic (North_Pole_Stereographic).
0 2020-04-28
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
0 2020-06-11
The data set contains observations from the automatic weather station as at 1 solstice, January 2008, on 29 December 2010.The site is located in xinchengzi town, miyun county, Beijing, with orchards (plums and apple trees), corn/bare land, and towns.The latitude and longitude of the observation point is 117.3233E, 40.6308N, and the altitude is 350m. The acquisition frequency of the automatic weather station is 10s, and the output of 10min is once.The observation factors include air temperature and relative humidity (30.56m, 10.66m), and the direction is due to the north.Wind speed (30.56m, 10.66m), wind direction (30.56m), heading due north;Air pressure (installed in waterproof box);Rainfall (31.46m);The four-component radiation (30.76m) is oriented due to the south.Infrared surface temperature (30.76m), the arm is facing south, the probe is facing vertically downward;The soil temperature and humidity probe was buried 2m south of the meteorological tower. The buried depth of the soil temperature probe was 0cm, 5cm, 10cm, 20cm, 40cm, 60cm, 80cm and 100cm. The buried depth of the soil water sensor was 2cm, 5cm, 10cm, 20cm, 40cm, 60cm and 100cm.Two hot plates (2) are buried 2cm underground, one in the ground where the sun can penetrate the fruit trees, and the other in the shadow of the fruit trees.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: June 10, 2010 at 10:30. Data released by the automatic weather station include:Date/Time for the Date/Time, and the air temperature humidity observation (Ta_10. 66 m, RH_10. 66 m, Ta_30. 56 m, RH_30. 56 m) (℃, %), wind speed (Ws_10. 66 m, Ws_30. 56 m) (m/s), wind (WD) (°), pressure (Press) (hpa), precipitation (Rain) (mm), four component radiation (DR, UR, DLR, ULR, Rn) (W/m2), the surface radiation temperature (IRT_1, IRT_2) (℃),Soil heat flux (Gs_1, Gs_2) (W/m2), multi-layer soil moisture (Ms_2cm, Ms_5cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (%) and multi-layer soil temperature (Ts_0cm, Ts_5cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_80cm, Ts_100cm) (℃). Please refer to Jia et al,(2012) for information of observation test or site, and Liu et al,(2013) for data processing.
0 2020-03-08
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls
0 2020-03-13
The dataset of airborne LiDAR mission at the super site in the Dayekou watershed flight zone on Jun. 23, 2008 included peak pulse data (*.LAS), full waveform data (.lgc), CCD photos, DEM, DSM and DOM. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 1 || 38°31′59.71″ || 100°14′54.02″ || 38°31′43.04″ || 100°15′44.28″ || 3550 || 1.3 || 7 |- | 2 || 38°32′01.21″ || 100°14′54.82″ || 38°31′44.53″ || 100°15′45.08″ || 3550 || 1.3 || 7 |- | 3 || 38°32′02.70″ || 100°14′55.62″ || 38°31′46.03″ || 100°15′45.88″ || 3550 || 1.3 || 7 |- | 4 || 38°32′04.20″ || 100°14′56.42″ || 38°31′47.52″ || 100°15′46.69″ || 3550 || 1.3 || 7 |- | 5 || 38°32′05.69″ || 100°14′57.23″ || 38°31′49.01″ || 100°15′47.49″ || 3550 || 1.3 || 6 |}
0 2019-09-11
Based on the geostationary satellites and reanalysis data, the China Regional Atmospheric Driving Dataset is a set of atmospheric driving data sets with high spatiotemporal resolution prepared by the China Meteorological Administration, with a spatial resolution of 0.1 ° × 0.1 ° and a temporal resolution of 1 Hours, covering a range of 75 ° -135 ° east longitude and 15 ° -55 ° north latitude, include 6 elements of near-surface temperature, relative humidity, ground pressure, near-surface wind speed, incident solar radiation on the ground, and ground precipitation rate. The preparation process of precipitation products is as follows: The 6-hour cumulative precipitation estimated from the multi-channel data of the China Fengyun-2 geostationary satellite is integrated with the 6-hour cumulative precipitation from conventional ground observations to obtain 6-hour cumulative precipitation spatial distribution data, and then use the high-resolution cloud classification information retrieved from the multi-channel inversion of the geostationary satellites determines the interpolation time weight of the cumulative precipitation and obtains an estimated one-hour cumulative precipitation. The preparation process of the radiation data is as follows: The surface incident solar radiation based on FY-2C, uses the radiation transmission model DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium) to calculate the radiation transmission and obtains the data of surface incident solar radiation in China. Preparation process of other elements: The space and time interpolation method is used for the NCEP reanalysis data of 1.0 ° × 1.0 ° to obtain driving factors such as near-surface air temperature, relative humidity, ground pressure, and near-surface wind speed of 0.1 ° × 0.1 ° per hour. Physical meaning of each variable: Meteorological Elements || Variable Name || Unit || Physical Meaning | Surface temperature || TBOT || K || Surface temperature (2m) | Surface pressure || PSRF || Pa || Surface pressure | Relative humidity on the ground || RH || kg / kg || Relative humidity near the ground (2m) | Wind speed on the ground || WIND || m / s || Wind speed near the ground (anemometer height) | Surface incident solar radiation || FSDS || W / m2 || Surface incident solar radiation | Precipitation Rate || PRECTmms || mm / hr || Precipitation Rate For more information, see the data documentation published with the data.
0 2020-03-31
China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method: [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View; [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK; [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file. [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
0 2020-06-09
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn