• 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区机载WiDAS地面同步观测数据集(2008年6月1日)

    The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.

    0 2019-09-12

  • 三极地区气溶胶光学厚度 V1.0(2000-2019)

    The "poles AOD Collection 1.0" aerosol optical thickness (AOD) data set adopts the self-developed visible band remote sensing inversion method, combined with the merra-2 model data and the official NASA product mod04. The data covers from 2000 to 2019, with the time resolution of day by day, covering the "three poles" (Antarctic, Arctic and Qinghai Tibet Plateau) area, and the spatial resolution of 0.1. Degree. The inversion method mainly uses the self-developed APRs algorithm to invert the aerosol optical thickness over ice and snow. The algorithm considers the BRDF characteristics of ice and snow surface, and is suitable for the inversion of aerosol optical thickness over ice and snow. The experimental results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the aerosol optical thickness in the polar region.

    0 2020-01-12

  • 三江源300米分辨率ESA土地覆盖数据集(1992-2015)

    The data set contains land cover data sets from the Yellow River Source, the Yangtze River Source, and the Lancang River from 1992 to 2015. A total of 22 land cover classifications based on the UN Land Cover Classification System were included. NOAA AVHRR, SPOT, ENVISAT, PROBA-V and other vegetation classification products were integrated. In China, (1) first, combined with the 1:100,000 vegetation classification (2007) of China, quality correction and control were performed, and (2) the vegetation classification of China emphasized the combination with climate zones, when correcting CCI-LC, climate divisions and the corresponding vegetation types were combined, and the data label was comprehensively revised.

    0 2019-09-13

  • 黑河综合遥感联合试验:临泽草地加密观测区PR2土壤水分剖面观测数据集(2008年5月-7月)

    The dataset of PR2 soil moisture profile observations (10cm, 20cm, 30cm, 40cm, 60cm and 100cm) was obtained in the Linze grassland foci experimental area. The sample points, with various underlying surface and depth were measured by PR2 probe in PR2 quadrate (3Grid×3Grid, 90m×90m) and PR2 line. Observations were carried out from May 31 to Jul. 13, 2008 with exceptions on Jun. 6, 8, 10, 13, 21, 27, 28, 29, Jul. 3 and 12. Data were archived in Excel and Word file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

    0 2019-09-13

  • 塔里木河流域HWSD土壤质地数据集(2009 )

    The data set is the HWSD soil texture data set in the Tarim River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (the soil name in the FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil); SWR: String (Soil moisture content characteristics); ADD_PROP: Real (specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk weight); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cations in the clay layer soil) Exchange capacity); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate Content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009).

    0 2020-03-30

  • 祁连山综合观测网 : 青海湖流域地表过程综合观测网 (青海湖湖面气象要素梯度观测系统-2018)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from January 1 to October 12, 2018. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The other data in addition to the four-component radiation data during January 1 to October 12 were missing because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

    0 2019-09-15

  • 黑河生态水文遥感试验:黑河流域中游作物物候与田间管理调查数据集

    The dataset combined with crop phrenology data and field management data which were investigated near the 13 eddy covariance (EC) stations. 1.1 Objective of investigation Objectives of investigation is to supply assistant information for experiment on EC, meteorology, and biophysics parameter. 1.2 Investigation spots and items Investigation spots include Jiu She of Shiqiao village (EC3), Xiaoman southern road (EC16), Wu She of Five stars village (EC13), Wu She of Xiaoman village (EC14), Er She of Shiqiao village (EC5), Liu She of Zhonghua village (EC11), Liu She of Shiqiao village (EC2), Wu She of JinCheng village (EC7), EC6, Liu She of Jincheng village (EC8), Yi She of Kangning village (EC9), Er She of Kangning village (EC10), and Si She of Jingcheng village (EC12). Investigation items comprise crop type, crop name, seed time, seed type, plant span, row span, field area, germination time, three leaves period, seven leaves period, farming way, farming time, irrigation time, irrigation water volume, fertilization time, fertilization type, and fertilization rate. The time used in this dataset is in UTC+8 Time. 1.3 Data collection Data was collected by using ask-reply approach according to investigation tables.

    0 2019-09-11

  • 黑河综合遥感联合试验:临泽站-临泽草地站飞行区机载成像光谱仪OMIS-II数据集(2008年6月6日)

    The dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Linze station-Linze grassland flight zone on Jun. 6, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image linage ! endtime ! lat ! long ! alt |- | 1 || 1-13 || 2008-06-06_09-32-22_DATA.BSQ || 09:56:32 || 39.167 || 100.044 || 2945.9 || 5718 || 10:02:53 || 39.362 || 100.191 || 2936.7 |- | 2 || 1-12 || 2008-06-06_10-02-38_DATA.BSQ || 10:08:42 || 39.373 || 100.193 || 2956.1 || 5565 || 10:14:53 || 39.182 || 100.049 || 2953.1 |- | 3 || 1-11 || 2008-06-06_10-14-39_DATA.BSQ || 10:19:51 || 39.177 || 100.039 || 2931.2 || 5432 || 10:25:54 || 39.363 || 100.179 || 2958.3 |- | 4 || 1-10 || 2008-06-06_10-25-39_DATA.BSQ || 10:31:50 || 39.376 || 100.182 || 2959.7 || 5396 || 10:37:50 || 39.190 || 100.041 || 2952.7 |- | 5 || 1-9 || 2008-06-06_10-37-35_DATA.BSQ || 10:43:06 || 39.179 || 100.026 || 2956.4 || 5399 || 10:49:06 || 39.368 || 100.169 || 2939.0 |- | 6 || 1-8 || 2008-06-06_10-48-51_DATA.BSQ || 10:55:20 || 39.383 || 100.174 || 2943.2 || 5643 || 11:01:36 || 39.1922 || 100.029 || 2944.8 |- | 7 || 1-7 || 2008-06-06_11-01-22_DATA.BSQ || 11:07:04 || 39.185 || 100.0175 || 2947.2 || 5306 || 11:12:58 || 39.373 || 100.159 || 2943.9 |- | 8 || 1-6 || 2008-06-06_11-12-43_DATA.BSQ || 11:18:57 || 39.386 || 100.162 || 2948.1 || 5604 || 11:25:10 || 39.196 || 100.018 || 2950.5 |- | 9 || 1-5 || 2008-06-06_11-24-56_DATA.BSQ || 11:30:22 || 39.188 || 100.006 || 2934.0 || 5469 || 11:36:26 || 39.378 || 100.149 || 2935.4 |- | 10 || 1-4 || 2008-06-06_11-36-12_DATA.BSQ || 11:42:30 || 39.389 || 100.151 || 2935.4 || 5570 || 11:48:41 || 39.198 || 100.007 || 2949.0 |- | 11 || 1-3 || 2008-06-06_11-48-27_DATA.BSQ || 11:54:21 || 39.205 || 100.005 || 2915.2 || 5028 || 11:59:57 || 39.380 || 100.138 || 2908.8 |- | 12 || 1-2 || 2008-06-06_11-59-42_DATA.BSQ || 12:06:00 || 39.395 || 100.142 || 2931.0 || 5523 || 12:12:08 || 39.205 || 99.999 || 2950.0 |- | 13 || 1-1 || 2008-06-06_12-11-53_DATA.BSQ || 12:18:17 || 39.197 || 99.985 || 2916.5 || 5451 || 12:24:20 || 39.389 || 100.131 || 2907.9 |}

    0 2019-12-27

  • 北极圈大河流域内的高精度降水产品数据集(1980-2018)

    There is a lack of a set of high-resolution precipitation gridded data with long time series in the main basin of the Arctic. This dataset provides daily precipitation in the main basin of the Arctic. The range of data set is from 45 ° N to 76.15 °N. The metadata used includes: the meteorological station data during 1980-2015 obtained from GSOD and the reanalysis data of ERA-interim during 1980-2018. This dataset was obtained by bias correction of ERA-interim data with the improved quantile mapping method, and the background data used for bias correction is the interpolation gridded precipitation, in interpolation process, we not only take into account the effect of elevation, but fully consider the influence of wind on gauge measurements, the gauge used in interpolation all undergo bias adjustment. This dataset performs well both in region scale and cell grid scale, with high accuracy, which providing a set of reliable precipitation gridded data for the hydrological research of the Arctic.

    0 2020-04-23

  • 黑河流域中游浅钻年代数据

    This data set contains two shallow drilling data near Heiquan in the middle reaches of Heihe River: 140 meters and 68.2 meters deep respectively. Paleomagnetic age samples were taken at 10-50 cm intervals from the two boreholes, and the magnetostratigraphic sequences of the two boreholes were obtained by testing these samples.

    0 2020-07-28