This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to December 31, 2018. The site (102.833E, 36.681N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil heat flux data were wrong during Jan.1 to May 30 because of rodent damage; The data during May. 30 to July 6 were missing because the power supply failure; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
0 2019-06-19
The data set contains the observation data of meteorological elements from the Barren-land Station,which is located along the lower reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2014 to December 31, 2014. The station is located in Sidaoqiao,Dalaihubu Town, Ejina Banner, Inner Mongolia. The underlying surface is barren land. The latitude and longitude of the observation point is 101.1326E, 41.9993N, and the altitude is 878m. The four-component radiometer is installed 6 meters above the ground, facing South; two infrared thermometers are installed 6 meters above the ground, facing South, and the probe orientation is vertical downward; the soil temperature probes are buried respectively at 0cm on the ground surface, 2cm and 4cm under the ground, they are located 2 meters from the meteorological tower in the South; the soil moisture sensors (installed on March 15,2014) are buried 2cm and 4cm under the ground, 2 meters from the meteorological tower in the South; the soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius) , soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil moisture (Ms_2cm , Ms_4cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm) (unit: Celsius). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. The surface radiation temperature IRT2 data during October 12,2014 to November 8,2014 is missing because of sensor problem; Some 2cm soil moisture data during March21 to March 29 and October 12 to November 8 is missing due to probe problem. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2014-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
0 2019-07-12
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Yakou station from January 1 to December 31, 2018. The site (100.2421°E, 38.0142°N) was located on an alpine meadow surface, which is near west of Qilian county, Qinghai Province. The elevation is 4148 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (PTB110; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the sensor malfunction, the infrared temperature and wind direction were wrong during October 10 to November 17 and after August, respectively. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
0 2020-07-25
This dataset includes the retrieved soil moisture products from the airborne PLMR microwave radiometer on 30 June, 7 July, 10 July, 26 July and 2 August, 2012 (UTC+8), in the HiWATER artificial oasis eco-hydrology experimental area of Heihe river basin. The soil moisture (SM), vegetation water content (VWC) and surface roughness (Hr) are simultaneously retrieved based on six brightness temperatures at three incidence angles (7°, 21.5°, 38.5°) and with dual polarization (H and V), by using the Levenberg-Marquardt optimization algorithm. The spatial resolution of the soil moisture products is 700 m, which represent the ~5 cm surface soil moisture according to the L-band observation wavelength. This dataset is in the format of asc, and with UTM projection (47°N). The validation against the eco-hydrological wireless sensor network observations and artificial synchronized observation shows that the total accuracy of this dataset can achieve 0.05 cm^3/cm^3, and that of the products on 7 July and 10 July even less than 0.04 cm^3/cm^3. This dataset can be helpful for the land surface process/hydrological process simulation and data assimilation, surface flux estimation, artificial irrigation management and spatial scaling research.
0 2019-05-23
The dataset is the distribution map of lakes in Qinghai Lake Basin. The projection is latitude and longitude. The data includes the spatial distribution data and attribute data of the lake. The attribute fields of the lake are: NAME (lake name), CODE (lake code).
0 2020-04-04
From May 25, 2012 to September 8, 2012, observation was made at 3100m grassland weather station in Tianlaochi watershed of Qilian mountain. The instrument was a 20cm evaporating dish, a round metal basin with a diameter of 20 cm and a height of 10 cm. The mouth of the basin was blade-shaped. In order to prevent birds and animals from drinking water, a trumpet-shaped wire mesh ring was sleeved on the upper part of the mouth. During measurement, the instrument shall be placed on the shelf with the mouth 70cm from the ground, and quantitative clear water shall be put in every day. After 24 hours, the remaining water quantity shall be measured by the dosage cup, and the reduced water quantity shall be the evaporation capacity. Data are daily evaporation from May 25, 2012 to September 8, 2012.
0 2020-03-04
On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.
0 2019-09-13
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The boundary map of the Heihe River Basin in 2010 is one of the basic geographic part of the atlas, with a scale of 1:2500000, positive axis equal product conic projection and standard latitude of 25 47。 Data sources: 2010 Heihe River basin boundary data, 2010 Heihe River Basin road data, 2008 1 million Heihe River basin administrative boundary data, 2009 Heihe River Basin residential area data, 2009 100000 river data
0 2020-03-03
This data set contains the observation data of vortex correlativity instrument at yakou station on the upstream of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in qilian county, qinghai province.The latitude and longitude of the observation point is 100.2421, 38.0142N, and the altitude is 4148 m.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift shall be identified in red.The eddy current correlator will be short of electricity at night in winter, resulting in the loss of data. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
0 2020-04-10
The medium resolution imaging spectrometer (MERIS) is a sensor mounted on the ENVISAT satellite of the European Space Agency. It has 15 spectral segments and scans the earth's surface by push sweep method. The incident angle of the point below the star is 68.5 degrees and the width is 1150km. At present, there are 56 ENVISAT MERIS data in Heihe River Basin. Acquisition time: 2008-05-01, 2008-05-02, 2008-05-03, 2008-05-05, 2008-05-07, 2008-05-08, 2008-05-11, 2008-05-14, 2008-05-17 (2 scenes), 2008-05-20 (2 scenes), 2008-05-21 (2 scenes), 2008-05-23 (2 scenes), 2008-05-24, 2008-05-30, 2008-05-31, 2008-06-01, 2008-06-02, 2008-06-05, 2008-06-06, 2008-06-09, 2008-06-12, 2008-06-15, 2008-06-18, 2008-06-21, 2008-06-22, 2008-06-24 (2 scenes), 2008-06-25, 2008-06-27, 2008-06-30, 2008-07-01, 2008-07-02, 2008-07-04, 2008-07-07, 2008-07-10, 2008-07-11, 2008-07-13 (2 scenes), 2008-07-13, 2008-07-16, 2008-07-17, 2008-07-20, 2008-07-23 (2 scenes), 2008-07-26 (2 scenes), 2008-07-27, 2008-07-29, 2008-07-30, 2008-08-01, 2008-08-02. The product level is L1B without geometric correction. The ENVISAT MERIS remote sensing data set of Heihe integrated remote sensing joint experiment was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).
0 2020-03-09
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn