In 2007, 2008 and 2009, ENVISAT ASAR data 179 scenes, covering the whole Heihe River Basin. Among them, there were 63 in 2007, 71 in 2008 and 45 in 2009. Imaging mode and acquisition time are respectively: app can select polarization mode from August 15, 2007 to December 23, 2007, from January 02, 2008 to December 202009-02-15, 2008 to September 06, 2009; imp imaging mode from June 19, 2009 to July 12, 2009; WSM wide mode from January 1, 2007 to December 302008-01-01, 2007 to November 28, 2008, from March 13, 2009 to May 22, 2009. The product level is L1B, which is amplitude data without geometric correction. The ENVISAT ASAR remote sensing data set of Heihe comprehensive remote sensing joint experiment is mainly obtained through the China EU "dragon plan" project (Project No.: 5322 and 5344); the WSM wide model data in 2007 and January 2008 are obtained from Professor Bob Su of ITC; the 8-view app can be purchased from the earth observation and digital earth center of Chinese Academy of Sciences.
0 2020-03-09
The project “The impact of the frozen soil environment on the construction of the Qinghai-Tibet Railway and the environmental effects of the construction” is part of the “Environmental and Ecological Science in West China” programme supported by the National Natural Science Foundation of China. The person in charge of the project is Wei Ma, a researcher at the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The project ran from January 2002 to December 2004. Data collected in this project included the following: Monitoring data of the active layer in the Beiluhe River Basin (1) Description of the active layer in the Beiluhe River Basin (2) Subsurface moisture data from the Beiluhe River Basin, 2002.9.28-2003.8.10 (Excel file) * Site 1 - Grassland moisture data * Site 2 – Removed turf moisture data * Site 3 - Natural turf moisture data * Site 4 - Gravel moisture data * Site 5 - Insulation moisture data (3) Subsurface temperature data from the Beiluhe River Basin, 0207-0408 Excel file * Temperature data for the ballast surface * Temperature data for insulation materials * Temperature data for a surface without vegetation * Temperature data for a grassland surface * Temperature data for a grit and pebble surface Data on the impact of construction on the ecological environment were obtained at Fenghuoshan, Tuotuohe, and Wudaoliang. Sample survey included plant type, abundance, community coverage, total coverage, aboveground biomass ratio and soil structure. The moisture content at different depths of the soil was detected using a time domain reflectometer (TDR). A set of soil samples was collected at a depth of 0-100 cm at each sample site. An EKKO100 ground-penetrating radar detector was used to continuously sample 1-1.5 km long sections parallel to the road to determine the upper limit depth of the frozen soil. 3. Predicted data: The temperature of the frozen soil at different depths and times was predicted in response to temperature increases of 1 degree and 2 degrees over the next 50 years based on initial surface temperatures of -0.5, -1.5, -2.5, -3.5, and -4.5 degrees. 4. The frozen soil parameters of the Qinghai-Tibet Railway were as follows: location, railway mileage, total mileage (km), frozen soil type mileage, mileage of zones with an average temperature conducive to permafrost, frozen soil with high temperatures and high ice contents, frozen soils with high temperatures and low ice contents, frozen soils with low temperatures and high ice contents, frozen soils with low temperatures and low ice contents, and melting area.
0 2019-09-14
This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).
0 2020-06-08
The dataset of precipitation and canopy interception observations was obtained in the Pailugou watershed foci experimental area from Jul. 4 to Sep. 28, 2007, and May 8 to Sep. 27, 2008, respectively. 18 interception slots were set in three plots and the detailed information was as follows: Plot number slot number in the Qinghai spruce forest Ⅰ 1, 2, 3, 4, 5, 6 Ⅱ 7, 8, 9, 10, 11, 12 Ⅲ A, B, C, D, E, F Observation items included controlled rainfall, the forest throughfall, the stem flow and the moss and litter interception barrel throughfall.
0 2019-05-23
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
0 2020-06-10
The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.
0 2020-06-05
1. The data set is the soil water content data set of the upper reaches of Heihe River Basin, and the data is the measured data of location points from 2013 to 2014. 2. The infiltration data is measured with ech2o. Including 5 layers of soil moisture content and soil temperature 3. Some instruments lack of data due to insufficient battery life, broken roads, stolen instruments and other reasons
0 2020-06-03
This data set contains the surface temperature and surface emissivity products retrieved from 12 ASTER data in the middle reaches of Heihe River Basin in 2012. The 12 scenes ASTER data all cover the ecological and hydrological experimental area of the middle reaches artificial oasis. The acquisition time (Beijing time) is: 2012-05-302012-06-152012-06-242012-07-102012-08-02, 2012-08-112012-08-182012-08-272012-09-03, 2012-09-122012-09-192012-09-28. The transit time of the above data is around 12:15 (Beijing time). Firstly, the L1B data is corrected by aster L3 data, and then the L1B data is corrected by MODIS mod07 atmospheric profile product with the same transit time and the atmospheric radiation transfer model MODTRAN. In order to improve the accuracy of atmospheric correction, the water vapor scaling (WVS) atmospheric correction method is used. Finally, the aster temperature emissivity separation (TES) algorithm is used to retrieve the surface temperature and the surface emissivity of five bands. The results show that the average deviation of surface temperature products is less than 0.5K and RMSE is less than 2K. This data set can provide reliable input data for remote sensing estimation of key water and heat variables of heterogeneous surface.
0 2020-03-13
Antarctic 1:100,000 airport distribution data set includes vector space data and related attribute data of airports (Antarctic_Airport) and airport runways (Antarctic_Airport_runways):Airport Name(Name), airport country Name(CNTRY_NAME), airport country abbreviation(CNTRY_CODE), LATITUDE, LONGITUDE. The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, WGS84 datum surface,Antarctic specific projection parameters(South_Pole_Stereographic).
0 2019-09-12
This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2017. The data set is 1:1 million traffic data in Sanjiangyuan area, including road (LRDL) and railway (LRRL) layers. Highway (LRDL) includes national, provincial, county, Township and other highways; Railway (LRRL) includes standard rail, narrow rail, subway and light rail. Highway (LRDL) Attribute Item Name and Definition: Attribute Item Description Fill in Example GB National Standard Classification Code 420301 RN Road Number X828 NAME Road Name RTEG Road Grade IV TYPE Road Type Viaduct Meaning of Highway (LRDL) Attribute Item: Attribute Item Code Description GB 420101 National Highway 420102 Building China Road 420201 Provincial Highway 420102 Provincial Highway in Architecture 420301 County Road 420302 Jianzhong County Road 420400 Rural Road 420800 Tractor ploughing Road 440100 Simple Highway 440200 Rural Road 440300 Trail Name and definition of railway (LRRL) attribute item: Attribute Item Description Fill in Example GB National Standard Classification Code 410101 RN Railway No. 0907 NAME Railway Name Qinghai-Tibet Railway TYPE Railway Type Elevated
0 2019-05-28
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn