• 黑河综合遥感联合试验:阿柔加密观测区机载WiDAS地面同步观测数据集(2008年5月31日)

    The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in No. 1 and No. 3 quadrates of the A'rou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and surface soil moisture. The surface radiative temperature (emissivity: 1.0) was measured by the automatic thermometer at intervals of 0.05s, and the data were archived as .txt files (.dat format). The first seven rows were the header file, including acquisition date, time, and intervals; besides, Time (starting time), TObj (target temperature), Tint (the interior temperature of the probe), TBox (the temperature of the box) and Tact (the actual temperature calculated from the given emissivity) were also listed. Soil moisture (0-12cm and 0-20cm) was measured by TDR. The data including the soil temperature, soil complex permittivity and soil conductivity, were archived in Excel format.

    0 2019-05-23

  • 祁连山综合观测网:兰州大学寒旱区科学观测网络(大野口站气象要素梯度观测系统-2018)

    This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2018. The site (100.285° E, 38.555° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil soil temperature/moisture/electrical conductivity profile (-0.05 m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_8m; RH_3m, RH_5 m, RH_8m) (℃ and %, respectively), wind speed (Ws_8m) (m/s), wind direction (WD_8m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_5 cm) (W/m^2), soil temperature (Ts_5cm)(℃), soil moisture (Ms_5cm)(%, volumetric water content), photosynthetically active radiation (μmol/ (s m^2)), soil water potential (Swp_5cm)(kpa), soil conductivity (Ec_5cm)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Aug 29 to Oct 18 because the battery is unstable; Some meterological data were wrong because the malfunction of datalogger (1.3-1.6;1.8-1.11;1.14-1.20;1.23-1.30;2.9-2.22;2.28-3.23;3.28-5.12); The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

    0 2019-09-15

  • 黑河生态水文遥感试验:水文气象观测网数据集(裸地站涡动相关仪-2013)

    This dataset contains the flux measurements from the barren-land station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 10 July to 31 December, 2013. The site (101.133° E, 41.999° N) was located in the barren-land surface, Ejin Banner in Inner Mongolia. The elevation is 878 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of CO2/H2O gas analyzer and CF card storage problem, data during 17 July to 13 September and 6 December to 11 December were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-11

  • 黑河综合遥感联合试验:临泽站加密观测区地下水位观测数据集

    The dataset of groundwater level observations was obtained by the measuring tape in the Linze station foci experimental area. Nine wells were selected in transit zone A, B and C, group 4 in Wulidun, Heihe river in Pingchuan, gobi in Yigongcheng, Wugongli, Linze station and the weather station. The first three were observed every day from May 23 to Jul. 21 and the other 6 were from Jun. 16 to Jul. 21, 2008.

    0 2019-05-23

  • 黑河流域数字土壤制图产品(第二版):土壤质地数据集(2012-2014)

    The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). The prediction method is mainly based on the soil landscape model. The basic theory of the model is the classic soil genesis theory. The model regards the soil as the product of the comprehensive effects of climate, topography, parent material, biology and time. Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Data content: spatial distribution of soil clay, silt and sand content Prediction method: enhanced regression tree Environmental variables: main soil forming factors

    0 2020-03-27

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(6号点涡动相关仪)

    This dataset contains the flux measurements from site No.6 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.35970° E, 38.87116° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1562.97 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-13

  • 阿克苏河流域人口、城市化、GDP及产业结构预测情景数据(V1.0)(2010-2050)

    Taking 2005 as the base year, the future population scenario was predicted by adopting the logistic model of population. This model not only effectively describes the pattern of changes in population and biomass but is also widely applied in the field of economics. The urbanization rate was predicted using the urbanization logistic model. Based on the observed horizontal pattern of urbanization, a predictive model was established by determining the parameters in the parametric equation by applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data represent the non-agricultural population. The logistic model was used to predict the future gross domestic product of each county (or city), and then the economic development level of each county (or city) in each period (in terms of GDP per capita). The corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changes in China and the research area lagged behind the growth in GDP, so the changes were adjusted according to the need for future industrial structure scenarios in the research area.

    0 2019-09-15

  • 南极半岛亚历山大岛30m冰面融水数据集(2000-2019)

    In recent years, the Antarctic Ice Sheet experiences substantial surface melt, and a large amount of meltwater formed on the ice surface. Observing the spatial distribution and temporal evolution of surface meltwater is a crucial task for understanding mass balance across the Antarctic Ice Sheet. This dataset provides a 30 m surface meltwater coverage, extracted from Landsat images, in the typical ablation zone of the ice sheet (Alexandria Island, Antarctic Peninsula) from 2000 to 2019. The projection of this dataset is South Polar Stereographic. The formats of the dataset are vector (.shp) and raster (.tif).

    0 2020-07-31

  • 青藏工程走廊活动层厚度现状分布(1980-2015)

    Based on the existing natural hole data of 15 active layer depth monitoring sites in the Qinghai-Tibet Engineering Corridor, the active layer depth distribution map of the Qinghai-Tibet Engineering Corridor was simulated using the GIPL2.0 frozen soil model. The model required synthesis of a temperature data set of time series. The temperature data were divided into two phases according to the time spans, which were 1980-2009 and 2010-2015. The data of the first phase were from the Chinese meteorological driving data set (http://dam. Itpcas.ac.cn/rs/?q=data#CMFD_0.1), and the data of the second phase was the application of MODIS surface temperature products (MOD11A1/A2 and MYD11A1/A2) with a spatial resolution of 1 km. In addition, the soil type data required by the model came from the China Soil Database (V1.1) and have a resolution of 1 km. At the same time, the topography was also considered. The research area was classified into 88 types based on the measured soil thermophysical parameters and land cover types, and then the simulation was performed. The simulation results were compared with the field measured data. The results showed that they were highly consistent, and the correlation coefficient reached 0.75. In alpine areas, the average depth of the active layer is below 2.0 m. However, in the river valleys, the average depth of the active layer is above 4.0 m. In the high plain area, the depth of the active layer is usually between 3.0 m and 4.0 m.

    0 2019-09-15

  • 黑河综合遥感联合试验:盈科灌区绿洲站自动气象站数据集(2007-2011)

    The dataset of automatic meteorological observations was obtained at the Yingke oasis station from Nov. 5, 2007 to Oct. 31, 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. Observation items were multilayer (2m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation; the surface infrared temperature; the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), the soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.

    0 2019-09-12