• 黑河流域社会经济发展的产业结构变化及其用水演变趋势数据

    Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin

    0 2020-07-28

  • 辽宁省1:100万湿地数据(2000)

    The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

    0 2020-03-28

  • 黑河生态水文遥感试验:黑河流域中上游太阳分光光度计观测数据集(2012)

    The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.

    0 2019-09-12

  • 黑河综合遥感联合试验:中游干旱区水文试验区滴谱仪观测数据集

    The dataset of the drop spectrometer (PARSIVEL) observations was obtained at an interval of 30 seconds in the arid region hydrology experiment area from May 18 to Jul. 5, 2008. The site was chosen in Xiaoman township (38.86°N, 100.41°E, 1515m), Ganzhou district, Zhangye city, Gansu province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The sampling area of PARSIVEL was 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.

    0 2019-09-12

  • 黑河流域1公里植被功能型格网数据集(2000)

    Vegetation functional type (PFT) is the combination of large plant species according to the ecosystem function of plant species and the way of resource utilization. Each plant functional type shares similar plant properties, which simplifies the diversity of plant species to the diversity of plant function and structure.Vegetation functional types have been used in the dynamic global vegetation model (DGVM) to predict changes in ecosystem structure and function under global change scenarios.The 1km vegetation functional pattern map of heihe basin is based on the 1km land cover map of heihe basin (MICLCover subset of heihe basin), and is divided by using the vegetation functional climate rules proposed by Bonan et al. (2002).The climate data utilize the 0.1 degree atmospheric drive data of he jie and Yang kun, developing China region from 1981 to 2008.This map can be used in the land surface process model of heihe river basin.

    0 2020-03-11

  • 黑河生态水文遥感试验:水文气象观测网数据集(峨堡站自动气象站-2014)

    This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from the burg station upstream of heihe hydrometeorological observation network.The station is located in caochang, qilian county, qinghai province.The latitude and longitude of the observation point is 100.9151e, 37.9492n and 3294m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The temperature of 4cm soil was between May 31, 2014 and June 17, 2014. Due to sensor problems, data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

    0 2020-04-10

  • 黑河天涝池流域森林生物量空间分布数据(2013年8月)

    The sample plot survey data are as follows: in August 2013, 30 forest sample plots were set up in tianlaochi basin, with the sample plot specification of 10 m×20 m, and the long side of the sample plot was parallel to the slope direction, including 26 Qinghai spruce forests, 2 Qilian yuanberlin forests and 2 spruce-cypress mixed forests. within the sample plot, the diameter at breast height (diameter at trunk height of 1.3 m) of each tree was measured by using a ruler. Using hand-held ultrasonic altimeter to measure the tree height and the height under branches (the height of the first living branch at the lower end of the crown) of each tree, measuring the crown width in the north-south direction and the east-west direction by using a tape scale, and positioning the sample plot by using differential GPS. Taking the carbon storage data of the sample plot as the optimal control condition, using Kriging interpolation to obtain the biomass spatial distribution map driving field, using HASM algorithm to simulate the forest biomass spatial distribution map of the waterlogging pool, the simulation results conform to the vegetation distribution law of the study area, and obtain better effects.

    0 2020-07-28

  • 黑河综合遥感联合试验:临泽草地加密观测区土壤水分剖面数据集

    The dataset of soil moisture profile observations (5cm, 10cm, 20cm and 40cm) was obtained in the Linze grassland foci experimental area from May 24 to Jun. 30, 2008. Four points, with various underlying surface and depth in each plot of A, B, C, D and E, were measured by the cutting ring. Data were archived in Excel and Word file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

    0 2019-05-23

  • 黑河综合遥感联合试验:临泽站加密观测区荒漠观测区C3/C4植被调查数据集

    The dataset of the discrimination of C3/C4 species was obtained by the handheld GPS and the digital camera in the Linze station foci experimental area on Jul. 10, 2008. Data fields included Gps, Longitude, Latitude, Photo_num and Describe (descriptions on C3/C4 vegetation and photos).

    0 2019-05-23

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(2号点涡动相关仪)(2012)

    This dataset contains the flux measurements from site No.2 eddy covariance system (EC) in the flux observation matrix from 3 June to 21 September, 2012. The site (100.35406° E, 38.88695° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.09 m. The EC was installed at a height of 3.7 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15