• 黑河流域张掖盆地关键水文变量的模拟结果数据集(1990-2012)

    This project is based on the gsflow model of USGS to simulate the surface groundwater coupling in Zhangye basin in the middle reaches of Heihe River. The space-time range and accuracy of the simulation are as follows: Simulation period: 1990-2012; Simulation step: day by day; The spatial scope of simulation: Zhangye basin; The spatial accuracy of simulation: the underground part is 1km × 1km grid (5 layers, the total number of grids in each layer is 150 × 172 = 25800, among which the active grid 9106); the surface part is based on the hydrological response unit (HRU) (588 in total, each HRU covers an area of several square kilometers to dozens of square kilometers). The data include: surface infiltration, actual evapotranspiration, average soil moisture content, surface groundwater exchange, shallow groundwater level, simulated daily flow of Zhengyi gorge, simulated monthly flow of Zhengyi gorge, groundwater extraction and river diversion

    0 2021-01-12

  • 内蒙古自治区1:100万湿地数据(2000)

    The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

    0 2020-03-28

  • 黑河生态水文遥感试验:水文气象观测网数据集(胡杨林站自动气象站-2014)

    This data set contains meteorological element observation data of Euphrates poplar forest station downstream of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in Inner Mongolia ejin banner dalaihubu town four road bridge, under the surface is hu Yang Lin and tamarix.The longitude and latitude of the observation point are 101.1239e, 41.9932n and 876m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The wind speed sensor is located at 28m, facing due north.Two four-component radiometers were installed at 6m and 24m respectively, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm on the surface and 2cm and 4cm underground, 2m to the south of the meteorological tower.The soil moisture sensor (installed on March 15, 2014) was buried 2cm and 4cm underground, located 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), wind speed (WS_28m) (unit: m/s), the radiation of 24 m four component (DR_1 UR_1 DLR_Cor_1 ULR_Cor_1 Rn_1) (unit: watts per square meter), the radiation of 6 m four component (DR_2 UR_2 DLR_Cor_2 ULR_Cor_2 Rn_2) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Degrees Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts per square meter), soil temperature (Ts_0cm Ts_2cm Ts_4cm) (unit: c), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), up and down photosynthetic active radiation (PAR_up, PAR_down) (unit: second micromoles/m2). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).

    0 2020-03-04

  • 中国西部地区长期干湿指数序列集(AD1500-BP2000)

    Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.

    0 2020-10-09

  • 玛多县高分1号NDVI数据集(2016)

    This is the vegetation index (NDVI) for Maduo County in July, August and September of 2016. It is obtained through calculation based on the multispectral data of GF-1. The spatial resolution is 16 m. The GF-1 data are processed by mosaicking, projection coordinating, data subsetting and other methods. The maximum synthesis is then conducted every month in July, August, and September.

    0 2021-03-28

  • 黑河天涝池流域森林生物量1m分辨率空间分布数据(1961-2010)

    The sample plot survey data are as follows: in August 2013, 30 forest sample plots were set up in tianlaochi basin, with the sample plot specification of 10 m×20 m, and the long side of the sample plot was parallel to the slope direction, including 26 Qinghai spruce forests, 2 Qilian yuanberlin forests and 2 spruce-cypress mixed forests. within the sample plot, the diameter at breast height (diameter at trunk height of 1.3 m) of each tree was measured by using a ruler. Using hand-held ultrasonic altimeter to measure the tree height and the height under branches (the height of the first living branch at the lower end of the crown) of each tree, measuring the crown width in the north-south direction and the east-west direction by using a tape scale, and positioning the sample plot by using differential GPS. Taking the carbon storage data of the sample plot as the optimal control condition, using Kriging interpolation to obtain the biomass spatial distribution map driving field, using HASM algorithm to simulate the forest biomass spatial distribution map of the waterlogging pool, the simulation results conform to the vegetation distribution law of the study area, and obtain better effects. Resolution 1m

    0 2020-07-29

  • 环北极地区多年冻土和地下冰状态图(V2)(1997)

    The data set includes 1. permaice (map of frozen soil types), 2. subsea (subsea boundary vectorgraph), 3. treeline (timberline vectorgraph), 4. nhipa (grid map) and 5. llipa (grid map). Permaice includes the following attribute fields: Num_code (frozen soil attribute code), Combo (frozen soil attribute), extent (frozen soil coverage) and content (ice content). The attribute comparison is as follows. (1) Frozen soil attribute comparison table: 0 (No information) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes) 24 - o (Ocean/inland seas) 25 - ld (Land) (2)The frozen soil coverage attribute comparison table c = continuous (90-100%) d = discontinuous (50-90%) s = sporadic (10-50%) i = isolated patches (0-10%) (3)The ice content comparison table h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%) ------------------------------------------------------------ Projection of the shapefiles is: PROJCS["Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area", GEOGCS["GCS_Sphere_ARC_INFO", DATUM["Sphere_ARC_INFO", SPHEROID["Sphere_ARC_INFO",6370997.0,0.0]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Lambert_Azimuthal_Equal_Area"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",180.0], PARAMETER["latitude_of_center",90.0], UNIT["Meter",1.0]] Projection for the raster (*.byte) files is: Projection: Lambert Azimuthal Units: meters Spheroid: defined Major Axis: 6371228.00000 Minor Axis: 6371228.000 Parameters: radius of the sphere of reference: 6371228.00000 longitude of center of projection: 0 latitude of center of projection: 90 false easting (meters): 0.00000 false northing (meters): 0.00000

    0 2020-01-16

  • 祁连山综合观测网:黑河流域地表过程综合观测网(四道桥超级站大孔径闪烁仪-2018)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were one German BLS900 at Sidaoqiao Superstation. The north tower was set up with the BLS900 receiver and the south tower was equipped with the BLS900 transmitter. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>7.58E-14). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The missing data from the BLS900 instrument were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2020-07-25

  • 中国西部地区陆面数据同化数据集(2002)

    The research project on land surface data assimilation system in western China belongs to the major research plan of "environmental and ecological science in western China" of the national natural science foundation. the person in charge is researcher Li Xin of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. The output data set of the Land Surface Assimilation System in Western China is one of the data achievements of the project. It is a Chinese Land Surface Data Assimilation System constructed by Dr. Huang Chun Lin and researcher Li Xin of the Institute of Cold and Arid Region Environment and Engineering, Chinese Academy of Sciences. CoLM model is used as a model operator to couple microwave radiation transmission models for different surface states such as soil (including melting and freezing), snow cover, etc. and to assimilate passive microwave observations (SSM/I and AMSR-E), so that the system can finally output assimilation data of soil moisture, soil temperature, snow cover, frozen soil, sensible heat, latent heat, evaporation, etc. with higher accuracy. Data format and naming: It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: YYYMMDDHH.grid, where YY is the year (2002), MM is the month, DD is the day, HH is the hour,. grid and. flux are file extensions, the former is the state variable output result and the latter is the flux output result. The file format is a binary FLOAT value, that is, every 4 bytes represents a value.

    0 2020-03-29

  • 三江源GIMMS NDVI3g数据集(1982-2015)

    The data set is NDVI data of long time series acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensor. The time range of the data set is from 1982 to 2015. In order to remove the noise in NDVI data, maximum synthesis and multi-sensor contrast correction are carried out. A NDVI image is synthesized every half month. The data set is widely used in the analysis of long-term vegetation change trend. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is GeoTIFF with spatial resolution of 8 km and temporal resolution of 2 weeks, ranging from 1982 to 2015. Data transfer coefficient is 10000, NDVI = ND/10000.

    0 2021-03-28