• 甘肃河西地区荒漠植物种群繁殖对策数据集(2004-2006)

    The research project on the breeding strategies of desert plants in hexi region of gansu province belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by professor an lizhe of lanzhou university. The project runs from January 2004 to December 2007. Remittance data of the project: 1. Effect of super - dry preservation on seeds The data is in Word format and contains a lot of analysis charts. A comparative study was conducted on the changes of vitality of overlord seeds and rhizoma coptidis seeds stored at 45℃, room temperature and 15℃ respectively, and the effects of dampening treatment, artificial aging and ultra-dry treatment on electrical conductivity and physiological activity indexes of seeds were conducted.The details are as follows: Energy change of seeds was preserved at 45℃ FIG. 1 germination rate (%) of overlord seeds stored at 45℃、FIG. 2 germination index of overlord seeds stored at 45℃、FIG. 3 vigor index of the seeds stored at 45℃. Change of seed vigor at room temperature FIG. 4 germination rate (%) of overlord seeds stored at room temperature、FIG. 5 germination index of overlord seeds stored at room temperature、FIG. 6 vigor index of overlord seeds preserved at room temperature. 15℃ preservation of seed vitality changes FIG. 7 germination rate of overlord seeds stored at 15℃ (%)、FIG. 8 germination index of alba seeds stored at 15℃、FIG. 9 vigor index of the seeds stored at 15℃. Changes of seed vigor of rhizoma coryzae at 45℃ FIG. 10 germination rate (%) of rhizoma coptidis seeds stored at 45℃、FIG. 11 germination index of the seeds of rhizoma coryzae at 45℃、FIG. 12 vigor index of seeds of corydalis corydalis preserved at 45℃. Changes of seed vigor of rhizoma coryzae at room temperature FIG. 13 germination rate (%) of rhizoma corydalis seeds preserved at room temperature、FIG. 14 germination index of seeds preserved at room temperature、FIG. 15 vigor index of seeds of corydalis corydalis preserved at room temperature Changes of seed vigor of rhizoma corydalis in 15℃ storage FIG. 16 germination rate (%) of rhizoma coptidis seeds stored at 15℃、FIG. 17 germination index of the seeds of rhizoma coptidis preserved at 15℃、FIG. 18 vigor index of seeds of corydalis sativus preserved at 15℃ Effect of slow wetting treatment on relative conductivity of seeds FIG. 28 changes in the relative conductivity of arrobatus seeds without dampening treatment、FIG. 29 changes of relative conductivity of overlord seeds after slow wetting treatment、FIG. 31 changes of relative electrical conductivity of seeds of rhizoma coryzae after dampening treatment Effects of artificial aging treatment on seed of archaea chinensis l FIG. 34 effects of artificial aging treatment on germination rate of overlord seeds、FIG. 35 effect of artificial aging treatment on seed vigor index、FIG. 36 effects of artificial aging treatment on the relative conductivity of overlord seeds Effects of artificial aging treatment on seeds of coryza sativa l FIG. 37 effect of artificial aging treatment on germination rate of seeds of coryza sativa l、FIG. 38 effect of artificial aging treatment on seed vigor index of rhizoma coryzae、FIG. 39 effects of artificial aging treatment on the relative electrical conductivity of the seeds of coryza sativa l Effects of artificial aging on the content of aldehydes in seeds after 15 days FIG. 52 effects of artificial aging treatment on the content of aldehydes in the seeds after 15 day、FIG. 53 effects of artificial aging treatment on the content of aldehydes in seeds of prunus chinense after 15 days, Effect of super - dry treatment on physiological activity index of seed Table 31 effect of super - dry treatment on physiological activity index of monkshood seed Table 32 influence of hyperdrying treatment on physiological activity index of seeds of coryza sativa l 2. Micromorphological and structural characteristics of the skin of desert plants (including experimental conditions, microscopic images of the skin microstructure and analysis of distribution of 47 plants, genus, species code, list of length and weight of long and short axes of seeds, and list of seed elements)

    0 2020-03-10

  • 黑河流域生态水文综合地图集:黑河流域水文地质图

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The hydrogeological map of Heihe River Basin is one of the chapters on hydrology and water resources in the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: hydrogeological map of Hexi Corridor (1:50000) issued by Gansu Provincial Institute of address survey. According to the survey conducted by Gansu Provincial Institute of geology, 1516 hydrogeological boreholes (119049 meters in total) were collected and sorted out; and 6947 groundwater extraction wells.

    0 2020-03-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(4号点-乌靖桥径流观测数据-2014)

    The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.

    0 2020-03-14

  • 黑河生态水文遥感试验:水文气象观测网数据集(黄藏寺站自动气象站-2015)

    This data set contains meteorological element observation data from January 1, 2015 to April 16, 2015 from huangzangsi station, upstream of heihe hydrometeorological observation network.The station is located in huangzangsi village, babao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.1918E, 38.2254N and 2612m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ts_160cm) (unit: volumetric water content, percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Air temperature is between 1.1-1.6 and 2.7-3.12, and data is missing due to sensor problems.The soil temperature of 0cm is between 1.3-1.12 and 1.22-4.16, and data is missing due to sensor problems.The temperature of 10cm soil is between 4.5-4.16, and data is missing due to sensor problems.The station was demolished after April 16;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-03-04

  • 葫芦沟水文断面流量观测数据集(2012)

    1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2012 to December 1, 2012. 2. Data content: at 08:00, 14:00 and 20:00 every day, the flow rate and water level change of the outlet hydrological section of hulugou River Basin are regularly observed (the flow rate is measured by ls45a rotating cup type flow meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd., and the water level change is monitored in real time by hobo pressure type water level meter), the water level flow relationship is established, and the outlet flow of the river basin is calculated. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.

    0 2020-03-11

  • 葫芦沟流域冻土冻结深度数据集(2011)

    1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m

    0 2020-03-11

  • 黑河流域FAPAR地面观测数据集(2011)

    This data includes the fAPAR and Lai data collected in 2011. The acquisition equipment is SunScan and LAI-2000. Among them, fAPAR measures 4 times of spread value. The sampling points are located in Zhangye agricultural demonstration base on July 30, 2011, next to national highway 312 in Ejina banner on August 4, sandaoqiao in Ejina banner on August 5 and Jiuquan Satellite Launch Center on August 6, 2011. Around Zhangye from July 4 to July 15, 2012.

    0 2020-03-07

  • 黑河生态水文遥感试验:水文气象观测网数据集(阿柔阴坡站自动气象站-2013)

    This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou shady slope station between 8 August, 2013, and 31 December, 2013. The site (100.411° E, 37.984° N) was located on a cold grassland surface on the shady slope, which is near south of A’rou township, Qilian county, Qinghai Province. The elevation is 3536 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2020-04-10

  • 中国地区长时间序列GIMMS植被指数数据集(1981-2006)

    GIMMS (glaobal inventory modelling and mapping studies) NDVI data is the latest global vegetation index change data released by NASA C-J-Tucker and others in November 2003. The dataset includes the global vegetation index changes from 1981 to 2006, the format is ENVI standard format, the projection is ALBERS, and its time resolution is 15 days and its spatial resolution is 8km. GIMMS NDVI data recorded the changes of vegetation in 22a area in the format of satellite data. 1. File format: The GIMMS-NDVI dataset contains all rar compressed files with a 15-day interval from July 1981 to 2006. After decompression, it includes an XML file, an .HDR header file, an .IMG file, and a .JPG image file. 2. File naming: The naming rules for compressed files in the NOAA / AVHRR-NDVI data set are: YYMMM15a (b) .n **-VIg_data_envi.rar, where YY-year, MMM-abbreviated English month letters, 15a-synthesized in the first half of the month, 15b-synthesized in the second half of the month, **-Satellite. After decompression, there are 4 files with the same file name, and the attributes are: XML document, header file (suffix: .HDF), remote sensing image file (suffix: .IMG), and JPEG image file. In this data set, the user uses the remote sensing image file with the suffix .IMG to analyze the vegetation index. Remote sensing image files with suffix of .IMG and .HDF used by users to analyze vegetation indices can be opened in ENVI and ERDAS software. 3. The data header file information is as follows: Coordinate System is:     PROJECTION ["Albers_Conic_Equal_Area"],     PARAMETER ["standard_parallel_1", 25],     PARAMETER ["standard_parallel_2", 47],     PARAMETER ["latitude_of_center", 0],     PARAMETER ["longitude_of_center", 105],     PARAMETER ["false_easting", 0],     PARAMETER ["false_northing", 0],     UNIT ["Meter", 1]] Pixel Size = (8000.000000000000000, -8000.000000000000000) Corner Coordinates: Upper Left (-3922260.739, 6100362.950) (51d20'23.06 "E, 46d21'21.43" N) Lower Left (-3922260.739, 1540362.950) (71d16'1.22 "E, 8d41'42.21" N) Upper Right (3277739.261, 6100362.950) (151d 8'57.22 "E, 49d 9'35.37" N) Lower Right (3277739.261, 1540362.950) (133d30'58.46 "E, 10d37'13.35" N) Center (-322260.739, 3820362.950) (101d22'21.08 "E, 35d42'18.02" N) Band 1 Block = 900x1 Type = Int16, ColorInterp = Undefined     Computed Min / Max = -16066.000,11231.000 4. Conversion relationship between DN value and NDVI  NDVI = DN / 1000, divided by 10000 after 2003   The NDVI value should be between [-1,1]. Data outside this interval represent other features, such as water bodies.

    0 2020-06-08

  • 黑河生态水文遥感试验:水文气象观测网数据集(阿柔超级站涡动相关仪-2016)

    This data set contains the observation data of vorticity correlativity from January 1, 2016 to December 31, 2016 of the super station at the upper reaches of heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The rack height of the vortex correlativity meter is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font, in which Li7500A calibration data of vorticity system from April 30 to May 1 is missing;When 10Hz data is missing due to a problem with the memory card storage data (11.9-11.24), the data will be replaced by 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-04-10