• 黑河综合遥感联合试验:中游干旱区水文试验区和阿柔加密观测区红外波谱观测数据集(2008年6月-7月)

    The dataset of TIR spectral emissivity was obtained in the arid region hydrology experiment area and A'rou foci experiment area. Observations were by: (1) Spectral emissivity obtained from 102F at 2-25um in cooperation with the handheld infrared thermometer (BNU) for the surface radiative temperature and one au-plating board for downward atmospheric radiation. The radiative transfer equation and TES methods were applied to retrieve emissivity. The grassland and the concrete floor were measured on May, 27, 2008, the wheat field and the maize field at ICBC resort on May, 29, 2008, the concrete floor (multiangle measurements) at ICBC resort on Jun. 3, 2008, the bare soil and the maize leaf in Yingke oasis maize field on Jun. 22, 2008, the maize and wheat canopy in Yingke oasis maize field on Jun. 23, 2008, the rape field in Biandukou experimental area on Jun. 24, 2008, the alfalfa, the saline land, the grassland and the barley land on Jun. 26, 2008, the wheat field and the maize field in Yingke oasis maize field on Jun. 29, 2008, the desert bare land and vegetation (Reaumuria soongorica) in No. 2 Huazhaiai desert plot on Jun. 30, 2008, the rape field and the grassland in Biandukou experimental area on Jul. 6, 2008, and the grassland and the bare land (multiangle) in A'rou experimental area on Jul. 14, 2008. The cold blackbody calibration (*.CBX/*.CBB), the warm blackbody calibration (*.WBX/*.WBB), the ground objects measurements (*.SAX), au-plating board measurements, and the downward atmospheric radiation (*.DWX) were all needed during observation. Moreover, the spectral radiance and emissivity were also archived. The response function of various bands could be acquired by 102F. And then emissivity of 2-25um could be retrieved. Two results of emissivity were developed: one was direct from 102F and the other was retrieved by ISSTES (Iterative spectrally smooth temperature-emissivity separation). Spectral resolution for raw data and proprecessed data was 4cm-1. (2) Spectral emissivity obtained from BOMAN at 2 -13μm in cooperation with the blackbody barrel and the blackbody from Institute of Remote Sensing Applications and the blackbody (BNU). The desert was measured on Jun. 30 and Jul. 1, 2008, A'rou foci experimental area on Jul. 14, 2008, indoor observations on the deep and shallow layer soil, vegetation, small stones, two maize plants from Yingke No.2 (YKYZYMD02) field and one maize plant and bare land from No. 3 (YKYZYMD03)field on on Jul. 16, 2008, Linze experimental area on Jul. 17, 2008, and gobi on Jul. 18, 2008. The sample site, coordinates, time and photos were all archived. During each observation, BOMAN was preheated and the blackbody was set at the predicted target temperature, which would be changed after the infrared radiation of the blackbody was measured by BOMAN. And then the target infrared radiation, the downward atmospheric radiation (reflected by the au-plating board) and the infrared radiation of the blackbody would be measured one by one. Raw data were archived in Igm, and after processed by FTSW500, the result was Rad (radiation). Finally, Rad would be changed into txt files by Matlab programs.

    0 2019-09-14

  • 黑河综合遥感联合试验:扁都口加密观测区机载WiDAS地面同步观测数据集(2008年5月31日)

    The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in 5 quadrates (30 m×30 m) the Biandukou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and soil moisture. The quadrates were covered with wheat, rape and bare land. The radiative temperature of 25 corner points (located in No. 2, 3, 4 and 5 quadrates) were acquired. (1) the surface radiative temperature by the handheld infrared thermometer; the quadrate of 30 m×30 m was divided into 21 corner points and each point was measured three times; two for the bare land and one for the vegetation if the two coexist. The data included raw data, recorded data and the blackbody calibrated data. (2) soil moisture (0-5cm) by TDR; 16 center points of the subplot (7.5m×7.5m) were measured three times and the data were archived as Excel files. (3) the time-continuous surface radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were archived as Excel files. Four data files were included, the fixed point temperature in No. 2, 3, 4 and 5 quadrates, the radiative temperature by the handheld infrared thermometer, calibration data and the time-continuous data.

    0 2019-05-23

  • 祁连山综合观测网:黑河流域地表过程综合观测网(四道桥超级站物候相机观测数据集-2018)

    The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

    0 2020-07-25

  • 黑河综合遥感联合试验:盈科绿洲与花寨子荒漠加密观测区机载WiDAS地面同步观测数据集(2008年6月1日)

    The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.

    0 2019-09-12

  • 三极地区气溶胶光学厚度 V1.0(2000-2019)

    The "poles AOD Collection 1.0" aerosol optical thickness (AOD) data set adopts the self-developed visible band remote sensing inversion method, combined with the merra-2 model data and the official NASA product mod04. The data covers from 2000 to 2019, with the time resolution of day by day, covering the "three poles" (Antarctic, Arctic and Qinghai Tibet Plateau) area, and the spatial resolution of 0.1. Degree. The inversion method mainly uses the self-developed APRs algorithm to invert the aerosol optical thickness over ice and snow. The algorithm considers the BRDF characteristics of ice and snow surface, and is suitable for the inversion of aerosol optical thickness over ice and snow. The experimental results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the aerosol optical thickness in the polar region.

    0 2020-01-12

  • 三江源300米分辨率ESA土地覆盖数据集(1992-2015)

    The data set contains land cover data sets from the Yellow River Source, the Yangtze River Source, and the Lancang River from 1992 to 2015. A total of 22 land cover classifications based on the UN Land Cover Classification System were included. NOAA AVHRR, SPOT, ENVISAT, PROBA-V and other vegetation classification products were integrated. In China, (1) first, combined with the 1:100,000 vegetation classification (2007) of China, quality correction and control were performed, and (2) the vegetation classification of China emphasized the combination with climate zones, when correcting CCI-LC, climate divisions and the corresponding vegetation types were combined, and the data label was comprehensively revised.

    0 2019-09-13

  • 黑河综合遥感联合试验:临泽草地加密观测区PR2土壤水分剖面观测数据集(2008年5月-7月)

    The dataset of PR2 soil moisture profile observations (10cm, 20cm, 30cm, 40cm, 60cm and 100cm) was obtained in the Linze grassland foci experimental area. The sample points, with various underlying surface and depth were measured by PR2 probe in PR2 quadrate (3Grid×3Grid, 90m×90m) and PR2 line. Observations were carried out from May 31 to Jul. 13, 2008 with exceptions on Jun. 6, 8, 10, 13, 21, 27, 28, 29, Jul. 3 and 12. Data were archived in Excel and Word file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

    0 2019-09-13

  • 塔里木河流域HWSD土壤质地数据集(2009 )

    The data set is the HWSD soil texture data set in the Tarim River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (the soil name in the FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil); SWR: String (Soil moisture content characteristics); ADD_PROP: Real (specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk weight); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cations in the clay layer soil) Exchange capacity); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate Content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009).

    0 2020-03-30

  • 祁连山综合观测网 : 青海湖流域地表过程综合观测网 (青海湖湖面气象要素梯度观测系统-2018)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from January 1 to October 12, 2018. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The other data in addition to the four-component radiation data during January 1 to October 12 were missing because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

    0 2019-09-15

  • 黑河生态水文遥感试验:黑河流域中游作物物候与田间管理调查数据集

    The dataset combined with crop phrenology data and field management data which were investigated near the 13 eddy covariance (EC) stations. 1.1 Objective of investigation Objectives of investigation is to supply assistant information for experiment on EC, meteorology, and biophysics parameter. 1.2 Investigation spots and items Investigation spots include Jiu She of Shiqiao village (EC3), Xiaoman southern road (EC16), Wu She of Five stars village (EC13), Wu She of Xiaoman village (EC14), Er She of Shiqiao village (EC5), Liu She of Zhonghua village (EC11), Liu She of Shiqiao village (EC2), Wu She of JinCheng village (EC7), EC6, Liu She of Jincheng village (EC8), Yi She of Kangning village (EC9), Er She of Kangning village (EC10), and Si She of Jingcheng village (EC12). Investigation items comprise crop type, crop name, seed time, seed type, plant span, row span, field area, germination time, three leaves period, seven leaves period, farming way, farming time, irrigation time, irrigation water volume, fertilization time, fertilization type, and fertilization rate. The time used in this dataset is in UTC+8 Time. 1.3 Data collection Data was collected by using ask-reply approach according to investigation tables.

    0 2019-09-11