• 黑河流域高程地貌-坡向(2013-2016)

    Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling up algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope direction data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.

    0 2020-03-28

  • 黑河生态水文遥感试验:黑河下游LAI 2200观测LAI数据集

    LAI observation was carried out for the typical underlying surface in the lower reaches of Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples and observation methods Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the downstream. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. LAI data were calculated according to the transmittance derived from an A value (above-canopy readings) and four B values (below readings). More than two LAI values were obtained for each sample. At the same time, the heights of the vegetation in each sample were measured. 3. Observation instrument LAI 2200 4. Data storage The observation recorded data were stored in excel and the original LAI data were stored in txt files.

    0 2019-09-13

  • 中国西部Landsat ETM遥感数据集

    This dataset includes: remote sensing data _ETM around 2000 in Western China; Data attributes: Pixel Size: 15-meter panchromatic: Band 8                 30-meter: Bands 1-5 and Band 7                 60-meter: Bands 6H and 6L Resampling Method: Cubic Convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) The data was downloaded from USGS: http://glovis.usgs.gov/ImgViewer/Java2ImgViewer.html?lat=38.3&lon=78.9&mission=LANDSAT&sensor=ETM. Part of the remote sensing images collected from various research projects. The folder contains ETM 8 band images (* .tif) and header files (* .met). The naming format of image files is row and column number _ETM image logo (7k, 7x, 7t), image acquisition time _ image 6 degree band number _ band number. The data also includes an image index map in shp format.

    0 2020-06-04

  • 黑河综合遥感联合试验:扁都口加密观测区L&K波段机载微波辐射计地面同步观测数据集(2008年3月21日)

    The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area from 8:25 to 11:15 BJT on Mar. 21, 2008. Observation items included: (1) microwave radiometer observations; (2) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple thermometer; (3) the frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal; (4) Snow depth by the ruler; (5) the gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) by the microwave drying method. The volumetric moisture can be calculated by the gravimetric moisture and bulk density. The data can be opened by Microsoft Office. The sample point coordinates were also included.

    0 2019-05-23

  • 耦合模式比较计划第6阶段CNRM-CM6-1模式全球植被生产力月数据(1850-2014)

    The data set is the global vegetation productivity data, including Gross Primary Productivity(GPP) and Net Primary Productivity (NPP). It was obtained by the CNRM-CM6-1 mode simulation of CMIP6 under the Historical scenario. The time range of the data covers from 1850 to 2014, the time resolution is a month, and the spatial resolution is about 1.406°×1.389°. For the simulated data details, please go to the following link: http://www.umr-cnrm.fr/cmip6/spip.php?article11.

    0 2019-09-15

  • 黑河综合遥感联合试验:临泽站加密观测区L&K波段机载微波辐射计地面同步观测数据集(2008年5月25日)

    The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze station foci experimental area on May 25, 2008. Observation items included: (1) soil moisture (0-5cm) measured once by the cutting ring method in the corner points of the 40 subplots of the west-east desert transit zone strip , three times in the corner points of the nine subplots of the north-south desert transit zone, once by the cutting ring and once by ML2X Soil Moisture Tachometer in the center points of nine subplots of the farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in the west-east and north-south desert transit zone strip (various times synchronizing with the airplane), and Wulidun farmland quadrates (repeated twice at intervals of 15m from east to west). There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. (3) maize BRDF once by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

    0 2019-09-12

  • 葫芦沟流域大本营综合环境观测系统数据集(2013)

    1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the daily scale data from January 1, 2013 to December 31, 2013.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m

    0 2020-03-10

  • 西南季风区气候与冰川演变对丽江-玉龙雪山地区资源和可持续发展的影响项目的汇交数据

    Impact of Climate and Glacier Evolution in Southwest Monsoon Region on Resources and Sustainable Development in Lijiang-Yulong Snow Mountain Region Project is a major research program of "Environmental and Ecological Science in Western China" sponsored by the National Natural Science Foundation. The person in charge is a researcher from He Yuanqing, Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences. The project runs from January 2004 to December 2006. This project collects data: the data of Yulong Snow Mountain Glacier and Environment Observation and Research Station are compiled in word document, and the data content includes: 1. Material Balance of Baishui Glacier No.1 from September to December 2008 (Profile, Lever, Accumulation and Dissipation) 2.Changes of Baishui Glacier No.1 in Yulong Snow Mountain from 1997 to 2008 (date, end elevation, end advancing and retreating distance, south advancing and retreating distance) 3. Monthly Average Flow Statistics of Mujia Station from 1979 to 2003 (Annual Average Flow, Annual Maximum Flow, Annual Maximum Time, Annual Minimum Flow, and Annual Minimum Time) 4. Meteorological data of the test station of Yulong Snow Mountain Glacier Observation Room From 2000 to 2008, the daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed of the base camp weather station. From 2006 to 2008, Ganhaizi Meteorological Station daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure value and day-to-day average wind speed in the Baishui No.1 glacier accumulation area of Yulong Snow Mountain. In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure, and day-to-day average wind speed at the end of glacier Baishui No.1 in Yulong Snow Mountain were recorded. Dew point temperature of Ganhaizi from 2006 to 2008 Daily average CO2 content (ppm) at Ganhaizi Meteorological Station from 2006 to 2007 Air Water Vapor Pressure (kPa) at Glacier Terminal Meteorological Station Air Water Vapor Pressure (kPa) of Meteorological Station in Glacier Accumulation Area 5. glacier ice Temperature Data of Baishui No.1, Yulong Snow Mountain Measured resistance values of ice temperature holes at measuring points 1, 2 and 3

    0 2020-06-09

  • 全球0.05度MODIS均一化植被指数(2001-2016)

    The NDVI data set is the sixth version of the MODIS Normalized Difference Vegetation Index product (2001-2016) jointly released by NASA EOSDIS LP DAAC and the US Geological Survey (USGS EROS). The product has a temporal resolution of 16 days and a spatial resolution of 0.05 degrees. This version is a Climate Modeling Grid (CMG) data product generated from the original NDVI product (MYD13A2) with a resolution of 1 kilometer. Please indicate the source of these data as follows in acknowledgments: The MOD13C NDVI product was retrieved online courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.

    0 2020-09-30

  • 青藏工程走廊多年冻土区气温降雨观测数据(1956-2012)

    The data set includes the trends of annual average temperature and rainfall changes at the three meteorological stations in the permafrost section of the Qinghai-Tibet Engineering Corridor over the past 50 years. According to the recorded data, the annual average temperature is experiencing a gradually rising process. The annual average temperature change over the past 56 years in Wudaoliang and Tuotuohe has a good correlation (r2=0.83). In 1957, the average annual temperatures of Wudaoliang and Tuotuohe were -6.6 °C and -5.1 °C, respectively. By 2012, the temperatures of the two stations were -4.6 and -3.1 °C, and the total temperature has risen by approximately 2 °C. The annual average temperature rises by 0.03-0.04 °C. The annual average temperature changes over the past 47 years in Wudaoliang and Anduo also have a good correlation (r2=0.84). In 1966, the average annual temperature in Anduo was -3.0 °C. By 2012, the temperature has risen to -1.8 °C, corresponding to a total temperature rise of approximately 1.2 °C and an annual average temperature rise of 0.02-0.03 °C. The annual average temperature in Wudaoliang and Tuotuohe rose slightly faster than that in Anduo. However, the change in rainfall was more volatile than that of temperature. The correlation between the rainfall change in Wudaoliang and Tuotuohe over the past 56 years is relatively poor (r2=0.60). In 1957, the annual rainfall amounts in Wudaoliang and Tuotuohe were 302 and 309 mm, respectively. By 2012, the annual rainfall amounts at the two stations were 426 and 332 mm. Thus, the rainfall in Wudaoliang had increased by 124 mm, with an annual rainfall increase of approximately 2 mm. In contrast, the annual rainfall in Tuotuohe only increased by 0.4 mm. The correlation between the rainfall change in Wudaoliang and Anduo over the past 47 years is also poor (r2=0.35). In 1966, and 2012, the annual average rainfall amounts in Anduo were 354 and 404 mm. The total increase was approximately 50 mm, and the annual average increase was 1 mm. The annual rainfall in Wudaoliang increased the fastest. The observation data from the three meteorological stations reveal climate changes in the permafrost sections of the Qinghai-Tibet Engineering Corridor. Judging from the overall trend of temperature and rainfall changes, the temperature in the northern and central parts of the corridor has increased rapidly over the past 50 years, exceeding the global average of 0.02 °C/a (IPCC). The rainfall increase in the northern part of the corridor is also obvious, especially the rate of rainfall increase at the Wudaoliang meteorological station. Increases in both temperature and rainfall have a great impact on accelerating the spatial variation in permafrost, and they are the leading cause of permafrost degradation on the Tibetan Plateau.

    0 2019-09-12