Based on the field survey, the aboveground and underground biomass of vegetation, and soil carbon and nitrogen contents in Nagqu, in the north of Zoige, eastern of Tibet plateau and the wind vacanofrom 2015 to 2017 were collected, and the data were collated and preliminarily analyzed. Dataset consists both of the aboveground and underground biomass of vegetation and soil carbon and nitrogen contents in different elevation gradient (subalpine meadow, alpine meadow, alpine shrub meadow), different moisture gradient (wetland, degraded swamp, swamp meadow, wet meadow, dry meadow and degraded meadow) and the different desertification degree (mild desertification, moderate desertification, severe desertification, desertification). The differences and trends of vegetation biomass and soil carbon and nitrogen contents under different gradients were analyzed. This dataset provides a theoretical basis for understanding and rational utilization of grassland resources, and also provides strong support for exploring the prediction of alpine grassland productivity under the global climate change.
0 2022-04-18
Radar penetration correction is essential for accurately estimating glacier mass balance when using the geodetic methods based on the radar-derived Digital Elevation Model (DEM). Due to heterogeneous snow distribution and snowpack properties, the radar penetration depth varies by region and is basically dependent on the altitudes. Therefore, this data set gives the result of the penetration depth difference of SRTM C/X-band radar on 1°×1° grid of High Mountain Asia Glaciers. The data set contains 214 1°×1° grids SRTM X-band and C-band penetration depth difference in HMA, and a linear fitting expression for each grid. According to the geodetic method, the 30 m SRTM X-band and C-band DEM are used to obtain the results of the penetration depth difference between the SRTM X-band and C-band of the 1°×1° high grid in HMA, and obtain the relationship between the SRTM X-C-band penetration depth difference and the elevation in the glacier area (for specific methods, please refer to references). The data is stored in excel files. Observational data can provide important basic data for studying the glacier mass balance in HMA, and can be used by scientific researchers studying climate, hydrology and glaciers.
0 2022-04-18
High Asia is very sensitive to climate change, and is a hot area of global change research. The changes of temperature and precipitation will be reflected in the freezing and thawing time of ice and snow. Satellite microwave remote sensing can provide continuous monitoring ability of ice and snow surface state in time and space. When a small part of ice and snow begins to melt, micro liquid water will also be reflected in active and passive microwave remote sensing signals. In the microwave band, the dielectric constant of ice and liquid water is very different, so it provides a basic theory for the microwave remote sensing monitoring of ice and snow melting. In the case of passive microwave, when ice and snow begin to melt and liquid water appears, its absorption and emissivity increase rapidly, so its emissivity, brightness temperature and backscatter coefficient will also change rapidly. This data set is the initial time of ice and snow melting in the high Asia region retrieved by using the satellite microwave radiometer and scatterometer observations from 1979 to 2018. The passive microwave remote sensing data are SMMR on satellite (1979-1987) and SSM / i-ssmis radiometer on DMSP (1988 present). The active microwave remote sensing data is the QuikSCAT satellite scatterometer (2000-2009).
0 2022-04-18
The melting observation of Hengduan Moutain glacier is mainly carried out on Hailuogou Glacier on the east slope of Gongga and the large and small Gongba glacier on the west slope of Gongga. In addition, some ablation observations have been made on Baishui 1 glacier on the east slope of Yulong. According to the melting observation of the four glaciers in the above two mountains, there are some regional representativeness, which makes them reflect the basic situation of melting glaciers in Hengduan Mountain. This data set records the glacier ablation data of different time and different places: from June to August 1982, the Glacier No. 1 in Baishui on the east slope of Yulong mountain was observed at the altitude of 4200m, 4600m and 4800m. From August 27, 1982 to the end of August 1983, the annual measured data of different heights of Hailuogou Glacier tongue on the east slope of Gongga Mountain were collected. From July 12, 1982 to August 6, 1983, the observation data of Gongba glacier melting on the west slope of Gongga Mountain were recorded.
0 2022-04-18
This data set comes from the book: glaciers in Hengduan Mountain area, which belongs to the series of scientific investigation in Hengduan Mountain Area of Qinghai Tibet Plateau. The chief editor is Li Jijun, the deputy chief editor is Su Zhen, and the guiding unit is Institute of geography, Chinese Academy of Sciences. The research team of the book is the Qinghai Tibet Plateau comprehensive research team of the Chinese Academy of Sciences, and the publishing house is Science Press. Due to abundant rainfall and deep snow cover in some areas of Hengduan Mountain. Avalanche, wind blown snow and abnormal snowfall have become a common natural disaster, which has caused great damage to the work and life of local residents. This book makes a detailed record of the snow disaster in Hengduanshan area. The data includes two workbooks and two pictures, which are the statistical table of snow damage status and damage degree, the regional characteristics of avalanche, the topographic cutting degree map of Western Sichuan, Northern Yunnan and southeastern Tibet, and the damage scope map of Hengduanshan avalanche.
0 2022-04-18
The distribution data of permafrost in the source area of the Yellow River is established based on the annual average ground temperature model of permafrost in the source area of the Yellow River. The annual average ground temperature of 0 ℃ is taken as the standard and boundary for dividing seasonal frozen soil and permafrost. Compared with the available permafrost maps of the source region of the Yellow River (1:3 million) and the permafrost background survey project of the Qinghai Tibet Plateau (1:1 million), the data set is based on the measured data of the Yellow River source area, which has higher consistency with the measured data, and the simulation accuracy of the permafrost distribution map is the highest. The data set can be used to verify the distribution of permafrost in the source area of the Yellow River, as well as to study the frozen soil environment.
0 2022-04-18
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
0 2022-04-18
Kara batkak glacier meteorological station in West Tianshan, Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observation data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), wind direction at maximum wind speed (°), maximum wind speed (M / s), maximum wind speed time, wind direction at maximum wind speed (°), and maximum wind speed (M / s) , maximum wind speed time, maximum instantaneous wind speed and wind direction in minutes (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), maximum air pressure occurrence time, minimum air pressure (HPA), minimum air pressure occurrence time). Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
0 2022-04-18
Kara batkak glacier meteorological station in Western Tianshan Mountains, Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observation data include hourly meteorological elements (temperature (℃), maximum temperature (℃), time of maximum temperature occurrence, minimum temperature (℃), minimum temperature occurrence time, 0.1mm hourly rainfall (mm), 0.5mm hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / S), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (°), maximum wind speed (°) Major wind speed (M / s), maximum wind speed time, wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed and direction (°), maximum instantaneous wind speed (M / s), relative humidity (%), minimum relative humidity (%), occurrence time of minimum relative humidity, water pressure (HPA), dew point temperature (℃), air pressure (HPA), sea level pressure (HPA), maximum pressure (HPA) The time of the highest air pressure, the lowest pressure (HPA) and the lowest air pressure (time). Meteorological observation elements are processed into climatic data after accumulation and statistics, providing important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health care and environmental protection departments.
0 2022-04-18
Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
0 2022-04-18
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn