The data involved two periods of geodetic glacier mass storage change of Naimona’Nyi glaciers in the western of Himalaya from 1974-2013 (unit: m w.e. a-1). It is stored in the ESRI vector polygon format. The data sets are composed of two periods of glacier surface elevation difference between 1974-2000 and 2000-2013, i.e. DHSRTM2000-DEM1974(DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000). DH2000-1974 was surface elevation change between SRTM2000 and DEM1974, i.e. the earlier historical DEM (DEM1974, spatial resolution 25m) was derived from 1:50,000 topographic maps in October 1974(DEM1974,spatial resolution 25m). The uncertainty in the ice free areas of DH2000-1974 was ±0.13 m a-1. The surface elevation difference between 2000-2013 (DH2000-2013, by DinSAR techniques from SRTM DEM2000 and TSX/TDX data on Oct.17th in 2013) The uncertainty in the ice free areas of DH2013-2000 was ±0.04 m a-1. Glacier-averaged annual mass balance change (m w.e.a-1) was averaged annually for each glacier, which was calculated by DH2000-1974/DH2013-2000, glacier coverage area and ice density of 850 ± 60 kg m−3. The attribute data includes Glacier area by Shape_Area (m2), EC74_00, EC00_13, i.e. Glacier-averaged surface elevation change in 1974-2000 and 2000-2013(m a-1), MB74_00, MB00_13 i.e. Glacier-averaged annual mass balance in 1974-2000 and 2000-2013 (m w.e.a-1), and MC74_00, MC00_13, Glacier-averaged annual mass change in 1974-2000 and 2000-2013 (m3 w.e.a-1), Uncerty_MB, is the uncertainty of glacier-averaged annual mass balance(m w.e. a-1), Uncerty_MC, is the Maximum uncertainty of glacier-averaged annual mass change(m3 w.e. a-1). The data sets could be used for glacier change, hydrological and climate change studies in the Himalayas and High Mountain Asia.
0 2022-04-18
The data set is the monthly average temperature data of China's multi scenario and multi-mode, with a spatial resolution of 0.0083333 ° (about 1km) from January 2021 to December 2100. The data is in NetCDF format. The data is generated in China through the delta spatial downscaling scheme according to the global > 100 km climate model data set released in the sixth phase of the IPCC coupled model comparison program (cmip6) and the global high-resolution climate data set released by worldclim. The data adopts the latest SSP scenarios (ssp119, ssp245, ssp585) released by IPCC. Each scenario contains three GCMS (ec-earth3, gfdl-esm4, mri-esm2-0) climate data. The geospatial range contained in the dataset is China's main land, excluding islands and reefs in the South China Sea. The unit is 0.1 ℃. The file name is GCM_ SSP_ Tmp-30s-serial number NC, 30s, i.e. 0.0083333 °, serial number from 1-40, serial number 1 represents 2021.1-2022.12, and represents the year in turn; Based on ec-earth3_ ssp119_ tmp-30s-1. NC file, for example, represents the monthly average temperature data of ec-earth3 climate model with 1km resolution from 2021.1 to 2022.12 under ssp119 scenario, including 24 layers. For a deeper understanding of the data, please refer to the data cited in the literature and the published papers of the authors.
0 2022-04-18
Soil moisture is an important boundary condition of earth-atmosphere exchanges, and it has been defined as an essential climate variable by GCOS. Vegetation optical depth is a physical variable to measure the attenuation of vegetation in microwave radiative transfer model, and it has been proved to be a good indicator of vegetation water content and biomass. This dataset uses the multi-channel collaborative algorithm (MCCA) to retrieve both soil moisture and polarized vegetation optical depth with SMAP brightness temperature. The algorithm uses a self-constraint relationship between land parameters and an analytical relationship between brightness temperature at different channels to perform the retrieval process. The MCCA does not depend on other auxiliary data on vegetation properties and can be applied to a variety of satellites. The soil moisture product from this dataset includes the soil moisture content in the unfrozen period and the liquid water content in the frozen period. Both horizontal- and vertical-polarization vegetation optical depth are retrieved. So far as we know, it is the first polarization-dependent vegetation optical depth product at L-band. This dataset was validated by 22 intensive soil moisture observation networks (9 core validation sites used by SMAP team and 13 sites not used by them). It was found that ubRMSE (unbiased root mean square error) of MCCA retrieved soil moisture is generally smaller than that of MTDCA and SMAP official products (DCA, SCA-H and SCA-V).
0 2022-04-18
The data set mainly includes the ice observation frequency (ICO) of north temperate lakes in four periods from 1985 to 2020, as well as the location, area and elevation of the lakes. Among them, the four time periods are 1985-1998 (P1), 1999-2006 (P2), 2007-2014 (P3) and 2015-2020 (P4) respectively, in order to improve the "valid observation" times in the calculation period and improve the accuracy. The ICO of the four periods is calculated by the ratio of "icing" times and "valid observation" times counted by all Landsat images in each period. Other lake information corresponds to the HydroLAKEs data set through the "hylak_id" column in the table. In addition, the data only retains about 30000 lakes with an area of more than 1 square kilometer, which are valid for P1-P4 observation. The data set can reflect the response of Lake icing to climate change in recent decades.
0 2022-04-18
The recent glacial changes in the third polar region have become the focus of the governments of the surrounding countries because of their important significance to the downstream water supply. Based on SRTM acquired in 2000 and aster stereo image pairs before and after 2015, more than 40 Typical Glaciers in the third polar region were selected to estimate the glacial surface elevation in corresponding period. This product estimates the surface elevation changes of more than 14000 glaciers in the third polar region in 2000-2015s, and the investigated area accounts for about 25% of the total glaciers in the third polar region. The data covers the whole third pole area except Altai mountain, with a spatial resolution of 30m.
0 2022-04-18
Glacier thickness is the vertical distance between the glacier surface and the glacier bottom. The distribution of glacier thickness is not only controlled by glacier scale and subglacial topography, but also varies with different stages of glacier response to climate. The data include longitude and latitude, elevation, single point thickness, total ice reserves and instrument type of glacier survey line. The glacier thickness mainly comes from drilling and ground penetrating radar (GPR). The drilling method is to drill holes on the ice surface to the bedrock under the ice, so as to obtain the thickness of the glacier at a single point; Glacier radar thickness measurement technology can accurately measure the continuous distribution of glacier thickness on the survey line, and obtain the topographic characteristics of subglacial bedrock, so as to provide necessary parameters for the estimation of glacier reserves and the study of glacier dynamics The accuracy of glacier drilling data reaches decimeter level. The accuracy of thickness measurement by GPR radar is between 5% and 15% in theory due to the difference of glacier properties and radar signal strength of bottom interface. Glacier thickness is a prerequisite for obtaining information of subglacial topography and glacier reserves. In the numerical simulation and model study of glacier dynamics, glacier thickness is an important basic input parameter. At the same time, glacier reserve is the most direct parameter to characterize glacier scale and glacier water resources. It is not only very important for accurate assessment, reasonable planning and effective utilization of glacier water resources, but also has important and far-reaching significance for regional socio-economic development and ecological security.
0 2022-04-18
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 12:00 on June 15, 2021, with a recording interval of one hour, and data was downloaded at 12:00 on Nov. 2, 2021. There is no missing data. Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 20:00 on June 19, 2021, with a recording interval of one hour, and data was downloaded at 11:00 onSept 18 , 2021. There is no missing data.
0 2022-04-18
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.
0 2022-04-18
The data in the form of .xlsx store the meteorological varialbes observed on the East Rongbuk glacier from May to July. Two sheets, named "Surface_energy_budget" and "Cycle", respectivley, are included. In the sheet of "surface_energy_budget", the meteorological variables are as follows: Four-component radiations (incident solar radiation, reflected shortwave radiation, incoming longwave radiation, outgoing longwave radiation)、wind speed and direction, air temperature and relative humidity, cloud index, south Asian summer monsoon and albedo. In addition, net shortwave radiation, net longwave radiation, net radiation, sensible heat, latent heat and subsurface heat are also included. Energy fluxes are in unit of W m-2. The sheet of "Cycle" stores the diurnal cycle of the meteorological variables mentioned above. In the first line, the prefixes of "1"、"2" and “3” indicate three observational periods, i.e., "1" represents days from 1 - 28 May, "2" represents the period between 29 May 16 June and "3" indicates time episode from 17 June to 22 July.
0 2022-04-18
The RCM employed is the International Center for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4, Giorgi et al., 2012). The domain used is the Coordinated Regional Climate Downscaling Experiment (CORDEX) Phase II East Asia domain, covering whole of China and its surrounding East Asia areas. The model is run at 25 km gird spacing, with its standard configuration of 18 vertical sigma layers with a model top at 10 hPa. Configuration of the model follows Gao et al. (2016, 2017), with land cover data over China was updated as reported by Han et al. (2015) to better represent the realistic vegetation. The initial and lateral boundary conditions needed to drive RegCM4 are derived from the CMIP5 models of HadGEM2-ES (RCP4.5 pathways), and the data set include temperature and precipitation.
0 2022-04-18
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn