The Qinghai Tibet Plateau belongs to the plateau mountain climate. The temperature and its seasonal variation have been one of the hot spots in the global climate change research. The data includes the temperature data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation on the data of national weather station in Qinghai Tibet Plateau. The data can be used to analyze the temporal and spatial distribution of air temperature in the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the law of temperature change with time in the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.
0 2022-04-18
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
0 2022-04-18
Evapotranspiration over the Qinghai Tibet Plateau is calculated by etwatch, a land surface evapotranspiration remote sensing model based on multi-scale and multi-source data. Etwatch adopts the method of combining the residual term method with P-M formula to calculate evapotranspiration. Firstly, according to the characteristics of the data image, the suitable model is selected to retrieve the evapotranspiration on a sunny day; the remote sensing model is often lack of data because the weather conditions can not obtain a clear image. In order to obtain the daily continuous evapotranspiration, the penman Monteith formula is introduced, and the evapotranspiration results on a sunny day are regarded as the "key frame", and the surface impedance information of the key frame is used as the basis to construct the surface impedance Based on the daily meteorological data, the time series data of evapotranspiration are reconstructed. Through the data fusion model, the high spatial and temporal resolution evapotranspiration data set is constructed by combining the low and medium resolution evapotranspiration temporal variation information with the high resolution evapotranspiration spatial difference information, so as to generate the 8 km resolution evapotranspiration of the Qinghai Tibet Plateau Data sets (1990-2015).
0 2022-04-18
Sentine-1 SAR data were used to monitor the permafrost of Biuniugou in Heihe River Basin of Qinghai-Tibet Plateau. Based on the Sentine-1 SAR image of Bison Valley from 2014 to 2018, the active layer thickness in the study area was estimated by using the small baseline set time series InSAR (DSs-SBAS) frozen soil deformation monitoring method based on distributed radar target, combined with SAR backscattering coefficient, MODIS surface temperature and Stefan model. The results show that the thickness of active layer is between 0.8 m and 6.6 m, with an average of about 3.3 M. It is of great significance to carry out large-scale and high-resolution monitoring.
0 2022-04-18
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
0 2022-04-18
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
0 2022-04-18
Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.
0 2022-04-18
The data set records the main distribution of sudden geological disasters in Qinghai Province from 2011 to 2018. The data are collected from the Department of ecological environment of Qinghai Province. The data set contains seven tables, which are: the main distribution of sudden geological disasters in 2011, 2012, 2014, 2015 and 2016 Distribution statistics table, 2017 Qinghai Province sudden geological disasters distribution table, 2018 Qinghai Province sudden geological disasters distribution table, the data table structure is the same. Each data table has five fields, such as the statistical table of the main distribution of sudden geological disasters in Qinghai Province in 2016 Field 1: county (city) Field 2: landslide Field 3: collapse Field 4: debris flow Field 5: loess collapsibility
0 2022-04-18
This data set is composed of tree ring width data of Qilian Mountain region of China in East Asian monsoon region . The tree rings in Qilian mountain contain 52 tree cores, which have 17081 values, the measurement accuracy is 0.01mm, and the tree species is Qilian juniper. The tree ring width was measured by lintab 6 tree ring analyzer, and the cross dating is checked by coffcha program to guarantee that the accuracy of the dating. The experiment analysis was performed in the laboratory of soil structure and minerals, Institute of Geology and Geophysics, Chinese Academy of Sciences. This data has certain significance for the study of paleoclimate in the edge of East Asian monsoon region .
0 2022-04-18
This data includes the land cover data of Central Asia, South Asia and Indochina Peninsula in the from 1992 to 2020 with a spatial resolution of 300mLand cover data includes 10 primary categories, which are combined from the secondary categories of the original data. The data source is the surface coverage product CCI-LC of ESA, where the spatial distribution of cropland, built-up land, and water for the land cover data from 1992 to 2020. Combined with the Tsinghua university global land cover data (FROM GLC, 30 m grid), NASA MODIS global land cover data (MCD12Q1, 500 m grid), the United States Geological Survey (USGS global land data (GFSAD30, 30 m), Japanese global forest data (PALSAR/PALSAR - 2, 25 m), the training sample dataset of land cover interpretation were built from the consistent areas of multiple products. The Google Earth Engine and random forest algorithm were used to correct the cropland, built-up land, and water of temporal CCI-LC data. Using the high resolution images in Google Earth at 2019 and 2020, the accuracy of change areas of cropland, built-up land, and water was validated by the stratified random sampling. A total of 3,600 land parcels were selected from 1,200 land parcels of the three land cover types, indicating that the accuracy of our corrected product increased in the range of 11% to 26% for the change areas compared to the CCI-LC product.
0 2022-04-18
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn