Population age structure resilience reflects the level of population age structure resilience in the countries along the Belt and Road. The World Bank's statistical database was used to prepare the data on the resilience of the population age structure of the countries along the Belt and Road. Based on the sensitivity and adaptability analysis, a comprehensive diagnosis was made based on the year-on-year change of each indicator, and the product on the resilience of population age structure was prepared.
0 2022-09-13
The data set includes the reconstructed long-term annual, ablation-season, and cold-season glacier-wide mass balance and its components for Guliya Ice Cap and the reconstructed daily meteorological data on the glacier from 1969 to 2019. The reconstructed meteorological data includes air temperature (℃), relative humidity (%), wind speed (m s-1), air pressure (hPa) and downward shortwave radiation (W m-2) at an elevation of 6004 m a.s.l. and precipitation (mm) at an elevation of 5491 m a.s.l. ERA5 data from the grid point (35°N, 78°75′E) around AWS2 were calibrated by the measured meteorological data. The exact method has been described in the reference. The long-term mass balance of Guliya Ice Cap during 1970-2019 was reconstructed using an energy and mass balance model and calibrated ERA5 data, which was calibrated and validated by in-situ measurements and geodetic mass balances. Please see the reference. The data is stored in an Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
0 2022-09-13
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
0 2022-09-13
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
0 2022-09-13
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
0 2022-09-13
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
0 2022-09-09
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
0 2022-09-09
The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.
0 2022-09-05
The global high-resolution simulated near sea surface temperature precipitation SST data set from 1990 to 2020 is from the latest cmip6 project. Cmip6 is the sixth climate model comparison program organized by the world climate research project (WCRP). Original data source: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 The data set includes the global near ocean surface temperature (TMP), precipitation (PR) and sea surface temperature (TOS). The air temperature and precipitation data include the rectangular combination of shared social economic path (SSP) and representative concentration path (RCP) of four different experimental scenarios of scenario MIP in cmip6. (1) Ssp126: upgrade rcp2.6 scenario based on ssp1 (low forcing scenario) (radiation forcing will reach 2.6w/m2 in 2100). (2) Ssp245: upgrade rcp4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 w / m2 in 2100). (3) Ssp370: a new rcp7.0 emission path based on ssp3 (medium forcing scenario) (radiation forcing will reach 7.0 w / m2 in 2100). (4) Ssp585: upgrade rcp8.5 scenario based on ssp5 (high forcing scenario) (ssp585 is the only SSP scenario that can make radiation forcing reach 8.5 w / m2 in 2100). SST data provides ssp126 scenario data.
0 2022-08-20
In recent years, with the acceleration of the melting of the Antarctic ice sheet, a large amount of ice melt has formed on the surface of the ice sheet from 2000 to 2019. It is of great significance to study the material balance of the Antarctic ice sheet to deeply understand the spatial-temporal distribution and dynamic changes of the melt water on the Antarctic ice sheet. This data set is based on Landsat7 and landsat8 images with 30 m spatial resolution from 2000 to 2019. By using normalized water body index, Gabor filtering and morphological path opening operations, the ice melt grid data set is generated, and the grid water body mask is converted into vector data in ArcGIS. This data set is based on the 250m ice surface melt water data set of the Antarctic ice sheet melting area (Alexander Island, Antarctic Peninsula) from 2000 to 2019 extracted from Landsat images. The time is concentrated from December to February (Southern Hemisphere summer)
0 2022-09-02
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn