• 青藏高原北部大气边界层基本数据库(1997-2008)

    The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.

    0 2022-04-18

  • 青藏高原北部祁连山活动层厚度实测数据集 (2011-2014)

    Active layer thickness in mountians shows strong spatial heterogeneity mainly due to the complex terrain. In this data set, the active layer thickness in the upper reaches of Heihe River Basin is systematically investigated by ground-penetrating radar (GPR) and other traditional methods. Compared with other direct measurement methods, the error is about 8 cm, indicating a high reliability. This data set can provide detailed field data for understanding the active layer thickness in this area and can provide evaluation datasets for the land surface model, especially for permafrost research.

    0 2022-04-18

  • 青藏高原北麓河气象站活动层地温监测数据集(2017-2018)

    The active layer is one of the main characteristics of permafrost. It melts in warm season and freezes in cold season, showing seasonal changes. The change of ground temperature of active layer will directly affect the change of temperature of permafrost, thus affecting the stability of permafrost.The monitoring station of this data set is located at 92 °E, 35 ° N, with an elevation of 4,600 M. The monitoring site is flat, the vegetation type is alpine meadow, and the monitoring instrument is DT500 series data acquisition instrument. The monitoring of ground temperature is carried out at 5 depths below the surface, 10 cm, 20 cm, 40 cm, 80 cm and 160cm respectively. The time interval of this data set is 1 day, which is the average value of data once every 30 minutes.Data are stable and continuous during the period.Scientific subjects such as thermal change process and change mechanism of active layer are carried out by combining data of soil heat flux and soil moisture.

    0 2022-04-18

  • 青藏高原冰川末端自动气象站数据(2019-2020)

    Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.

    0 2022-04-18

  • 青藏高原冰芯黑碳数据集(1950-2006)

    As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.

    0 2022-04-18

  • 青藏高原大于1平方公里湖泊数据集(V1.0)(1970s,1990,2000,2010)

    The dataset includes vector map of the lakes larger than 1k㎡ on Tibetan Plateau in 1970s, 1990, 2000, 2010. The lake boundry data was extracted from remote sensing image like Landsat MSS, TM, ETM+, by means of visual interpretation. The data type is vector data, and it's attribute class includes Area (km²). The Projected Coordinate System is Albers Conical Equal Area. It is mainly used in the study of changes in lakes, hydrological and meteorological on the Tibetan Plateau.

    0 2022-04-18

  • 青藏高原地表大气含氧量(1980-2019)

    Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019 (data from China Meteorological Administration and National Meteorological Science Data Center), the oxygen content was calculated. It was found that there was a significant linear correlation between oxygen content and altitude, y = -0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.

    0 2022-04-18

  • 青藏高原地面光谱数据集(2019)

    The spectral characteristics of different land use types are mainly determined by spectrograph in the surface spectral data set of Qinghai Tibet Plateau. The measured ground features are mainly divided into woodland, (Alpine) shrub, (Alpine) grassland, wetland, cultivated land and bare land. It includes the field observation points in Lhasa, Linzhi, Shigatse, Ali and Naqu. The spectral characteristics of forests were measured based on the different growth stages of vegetation; The spectral characteristics of grassland were measured based on different coverage; The spectral characteristics of cultivated land were measured based on the main crop types, rape flowers and highland barley; The measurements of wetlands were conducted on the rivers, low-lying valleys and lakes; The measurements of bare lands were conducted on the desert, Gobi and roads, which have no vegetation cover. The measurement conducted from July to August in 2019, and the data is daily observation data. The data set can provide a reference for the field verification of remote sensing interpretation.

    0 2022-04-18

  • 青藏高原地区10m不透水面产品(2018)

    Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

    0 2022-04-18

  • 青藏高原地区30m不透水面产品(2015)

    Data content: The data set products include impervious surface products with a resolution of 30 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Landsat series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high, better than 80% in most areas. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

    0 2022-04-18