This data set is a code file set of TCA (triple collision analysis) algorithm, which is used to generate the global daily-scale soil moisture fusion dataset from 2011 to 2018.
0 2022-11-03
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
0 2022-04-18
Soil moisture is an important boundary condition of earth-atmosphere exchanges, and it has been defined as an essential climate variable by GCOS. Vegetation optical depth is a physical variable to measure the attenuation of vegetation in microwave radiative transfer model, and it has been proved to be a good indicator of vegetation water content and biomass. This dataset uses the multi-channel collaborative algorithm (MCCA) to retrieve both soil moisture and polarized vegetation optical depth with SMAP brightness temperature. The algorithm uses a self-constraint relationship between land parameters and an analytical relationship between brightness temperature at different channels to perform the retrieval process. The MCCA does not depend on other auxiliary data on vegetation properties and can be applied to a variety of satellites. The soil moisture product from this dataset includes the soil moisture content in the unfrozen period and the liquid water content in the frozen period. Both horizontal- and vertical-polarization vegetation optical depth are retrieved. So far as we know, it is the first polarization-dependent vegetation optical depth product at L-band. This dataset was validated by 19 dense soil moisture observation networks (9 core validation sites used by SMAP team and 13 sites not used by them), and the widely used soil climate analysis network (SCAN). It was found that ubRMSE (unbiased root mean square error) of MCCA retrieved soil moisture is generally smaller than that of other SMAP products.
0 2022-11-25
The water level observation data set of lakes on the Tibetan Plateau contains the daily variations of water levels for three lakes: Zhari Namco, Bamco and Dawaco. The lake water level was obtained by a HOBO water level gauge (U20-001-01) installed on the lakeshore, then corrected using the barometer installed on the shore or pressure data of nearby weather stations, and then the real water level changes were obtained. The accuracy was less than 0.5 cm. The items of this data set are as follows: Daily variation data of water level in Zhari Namco from 2009 to 2014; Daily variation data of water level in Bamco from 2013 to 2014; Daily variation data of water level in Dawaco from 2013 to 2014. Water level, unit: m.
0 2022-11-20
The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
0 2022-11-17
Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
0 2022-11-15
The Qinghai Tibet Engineering Corridor starts from Golmud in the north and ends at Lhasa in the south. It passes through the core area of the Qinghai Tibet Plateau and is an important channel connecting the mainland and Tibet. Permafrost temperature is not only an important index to study ground thermal state in permafrost regions, but also a key factor to be considered in permafrost engineering construction. The core of GIPL1.0 is the Kudryavtesv method, which considers the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin found that compared with the Kudryavtesv method, the accuracy of TTOP model was higher. Therefore, the model was improved in combination with the freezing/thawing index. Through the verification of field monitoring data, it was found that the simulation error of permafrost temperature was less than 1 ℃. Therefore, the improved GIPL1.0 model is used to simulate the permafrost temperature of the Qinghai Tibet project corridor, and predict the future permafrost temperature under the SSP2-4.5 climate change scenario.
0 2022-11-15
Retrogressive thaw slumps (RTSs) are slope failures caused by the thawing of ice-rich permafrost. Once developed, they usually retreat at high speeds (meters to tens of meters) towards the upslope direction, and the mudflow may destroy infrastructure and release carbon stored in frozen ground. RTSs are frequently distributed in permafrost areas and increase dramatically but lack investigation. Qinghai Tibet Engineering Corridor crosses the permafrost, links the inland and the Tibet. However, in this critical area, we lack knowledge of the distribution and impact of RTSs. To compile the first comprehensive inventory of RTSs, this study uses an iterative semi-automatic method based on deep learning and manual inspection to delineate RTSs in 2019 images. The images from PlanetScope CubeSat have a resolution of 3 meters, have four bands, cover a corridor area of approximately 54,000 square kilometers. The method combines the high efficiency and automation of deep learning and the reliability of the manual inspection to map the entire region ninth, which minimize the missings and misidentification. The manual inspection is based on geomorphic features and temporal changes (2016 to 2020) of RTSs. The inventory which includes 875 RTSs with their attributes, including identification, Longitude and Latitude, possibilities and time, provides a benchmark dataset for quantifying permafrost degradation and its impact.
0 2022-11-11
Lakes collect runoff, sediment and nutrients from upstream watersheds and are an important "destination" of material migration at the watershed scale. Therefore, the attributes of lake water and sediment are affected by catchment attributes (e.g. climate, terrain and vegetation conditions) to a large degree. This dataset delineates the watershed boundaries of 1525 Lakes (with an area from 0.2 to 4503 square kilometers) on the Tibetan Plateau, and calculates 721 catchment-scale attributes on the aspects of lake body, terrain, climate, vegetation, soil/geology and anthropogenic activities. This is the first dataset of lake-catchment characteristics on the Tibetan Plateau, which can provide foundamental data for the study of lakes in the Tibetan Plateau.
0 2022-04-15
This is a comprehensive dataset on microbial abundance, dissolved organic carbon (DOC), and total nitrogen (TN) for glaciers on the TP based on extensive field sampling from 2010. The dataset comprises 5,409 microbial abundance records of ice cores and snow pits from 12 glaciers and 2,532 DOC and TN records of five habitats, including ice core, snow pit, surface ice, surface snow, and proglacial runoff, from 38 glaciers. These glaciers covered broad areas and diverse climate conditions with a multiyear average temperature ranging from -13.4 ℃ (the Guliya glacier) to 2.9 ℃ (the Zhuxigou glacier) and multiyear average precipitation ranging from 76.9 mm (the No.15 glacier) to 927.8 mm (the 24K glacier), which makes this dataset suitable for studies across the entire TP. To the best of our knowledge, this is the first dataset of microbial abundance and TN in glaciers on the TP, and also the first dataset of DOC in ice cores on the TP. These new data could provide valuable information for researches on the glacier carbon and nitrogen cycle and assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
0 2022-04-15
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn