Under the summer sunlight, the snow covering the ice melts, forming different shapes and sizes of ice pools on the ice. The melting pool caused by the melting of the sea ice surface will reduce the sea ice albedo, which will have a significant impact on the energy balance in the polar region, increasing absorption and thus accelerating the sea ice melting process. Among the factors that affect the sea ice albedo, melting pool is one of the most important and most violent factors. With climate change, the rate of ice melting in summer is also getting faster and faster. The energy balance on the Earth's surface has a significant impact, and the acceleration of ice melting speed may also make the melting pool, an important natural phenomenon, one of the most significant ice surface features during the Arctic sea ice melting season. The albedo of melting pool is between sea water and sea ice. The study of melting pool on ice is also an important part of the study of the rapid change mechanism of Arctic sea ice. Due to the similar microwave signal characteristics between sea ice melting pools and the sea surface, and the significant uncertainty of using microwave data to map melting pool coverage due to factors such as wind speed and sea ice melting, the most reliable remote sensing method for melting pool coverage is to use medium resolution optical remote sensing data (such as MODIS) to map sub pixel melting pool coverage. This dataset includes the use of MODIS data for sub pixel decomposition inversion of Arctic sea ice melting pool coverage and sea ice concentration based on dynamic end element reflectance.
0 2023-06-07
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
0 2022-12-07
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
0 2022-12-07
CAS FGOALS-f3-H, with a 0.25° horizontal resolution, and CAS FGOALS-f3-L, with a 1° horizontal resolution, were forced by the standard external conditions, and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of ‘highresSST-present’ and ‘highresSST-future’, respectively. The model outputs contain multiple time scales including the required hourly mean, three-hourly mean, six-hourly transient, daily mean, and monthly mean datasets.
0 2022-12-07
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn