Simulated forcing dataset of 3km/6hour in Heihe River basin (1980-2080)

Ec-earth-heihe USES the output of the global model of ec-earth as the driving field to simulate the 6-hour data of the Heihe river basin in 2006-2080 under the scenarios of 1980-2005 and RCP4.5.Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 1980 to December 31, 2010, with an interval of 6 hours. Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) abbreviation usurf 2) Anemometer south wind(m/s), abbreviation vsurf 3) Anemometer temperature (deg K) abbreviation tsurf 4) maximal temperature (deg K) abbreviation tmax 5) minimal temperature (deg K) abbreviated tmin 6) Anemom specific humidity (g/kg) abbreviation qsurf 7) Accumulated precipitation (mm/hr) abbreviation precip 8) Accumulated evaporation (mm/hr) abbreviation evap 9) Accumulated sensible heat (watts/m**2/hr) abbreviation sensible 10) Accumulated net infrared radiation (watts/m * * 2 / hr) abbreviation netrad File name definition: Abbreviation-ec-earth-6hour,YTD For example, precip-ec-earth-6hour.198001,Is the data of 6-hour precipitation in January, 1980 (1) historical 6-hour data driven by the ec-earth global climate model from 1980 to 2005 (2) produce 6-hour data of heihe river basin under the scenario of RCP 4.5 for the global climate model ec-earth from 2006 to 2080

Siol map based Harmonized World Soil Database (v1.2)

Soil data is important both on a global scale and on a local scale, and due to the lack of reliable soil data, land degradation assessments, environmental impact studies, and sustainable land management interventions have received significant bottlenecks . Affected by the urgent need for soil information data around the world, especially in the context of the Climate Change Convention, the International Institute for Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United Nations (FAO) and the Kyoto Protocol for Soil Carbon Measurement and FAO/International The Global Agroecological Assessment Study (GAEZ v3.0) jointly established the Harmonized World Soil Database version 1.2 (HWSD V1.2). Among them, the data source in China is the second national land in 1995. Investigate 1:1,000,000 soil data provided by Nanjing Soil. The resolution is 30 seconds (about 0.083 degrees, 1km). The soil classification system used is mainly FAO-90. The core soil system unit unique verification identifier: MU_GLOBAL-HWSD database soil mapping unit identifier, connected to the GIS layer. MU_SOURCE1 and MU_SOURCE2 source database drawing unit identifiers SEQ-soil unit sequence in the composition of the soil mapping unit; The soil classification system utilizes the FAO-7 classification system or the FAO-90 classification system (SU_SYM74 resp. SU_SYM90) or FAO-85 (SU_SYM85). The main fields of the soil property sheet include: ID (database ID) MU_GLOBAL (Soil Unit Identifier) ​​(Global) SU_SYMBOL soil drawing unit SU_SYM74 (FAO74 classification); SU_SYM85 (FAO85 classification); SU_SYM90 (name of soil in the FAO90 soil classification system); SU_CODE soil charting unit code SU_CODE74 soil unit name SU_CODE85 soil unit name SU_CODE90 soil unit name DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS(19.5); AWC_CLASS (effective soil water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification to the bottom of the soil); SWR: String (soil moisture content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_TEXTURE (top soil texture); T_GRAVEL: Real (top gravel volume percentage); (unit: %vol.) T_SAND: Real (top sand content); (unit: % wt.) T_SILT: Real (surface layer sand content); (unit: % wt.) T_CLAY: Real (top clay content); (unit: % wt.) T_USDA_TEX: Real (top layer USDA soil texture classification); (unit: name) T_REF_BULK: Real (top soil bulk density); (unit: kg/dm3.) T_OC: Real (top organic carbon content); (unit: % weight) T_PH_H2O: Real (top pH) (unit: -log(H+)) T_CEC_CLAY: Real (cation exchange capacity of the top adhesive layer soil); (unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of top soil) (unit: cmol/kg) T_BS: Real (top level basic saturation); (unit: %) T_TEB: Real (top exchangeable base); (unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top sulfate content); (unit: % weight) T_ESP: Real (top exchangeable sodium salt); (unit: %) T_ECE: Real (top conductivity). (Unit: dS/m) S_GRAVEL: Real (bottom crushed stone volume percentage); (unit: %vol.) S_SAND: Real (bottom sand content); (unit: % wt.) S_SILT: Real (bottom sludge content); (unit: % wt.) S_CLAY: Real (bottom clay content); (unit: % wt.) S_USDA_TEX: Real (bottom USDA soil texture classification); (unit: name) S_REF_BULK: Real (bottom soil bulk density); (unit: kg/dm3.) S_OC: Real (underlying organic carbon content); (unit: % weight) S_PH_H2O: Real (bottom pH) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying adhesive layer soil); (unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of the bottom soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation); (unit: %) S_TEB: Real (underlying exchangeable base); (unit: cmol/kg) S_CACO3: Real (bottom carbonate or lime content) (unit: % weight) S_CASO4: Real (bottom sulfate content); (unit: % weight) S_ESP: Real (underlying exchangeable sodium salt); (unit: %) S_ECE: Real (underlying conductivity). (Unit: dS/m) The database is divided into two layers, with the top layer (T) soil thickness (0-30 cm) and the bottom layer (S) soil thickness (30-100 cm). For other attribute values, please refer to the HWSD1.2_documentation documentation.pdf, The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description and HWSD.mdb.

WATER: PROBA CHRIS dataset (2008-2009)

Proba (project for on board autonomy) is the smallest earth observation satellite launched by ESA in 2001. Chris (compact high resolution imaging Spectrometer) is the most important imaging spectrophotometer on the platform of proba. It has five imaging modes. With its excellent spectral spatial resolution and multi angle advantages, it can image land, ocean and inland water respectively for different research purposes. It is the only on-board sensor in the world that can obtain hyperspectral and multi angle data at the same time. It has high spatial resolution, wide spectral range, and can collect rich information in biophysics, biochemistry, etc. At present, there are 23 scenes of proba Chris data in Heihe River Basin. The coverage and acquisition time are as follows: 4 scenes in Arjun dense observation area, 2008-11-18, 2008-12-05, 2009-03-29, 2009-05-22; 1 scene in pingdukou dense observation area, 2009-07-13; 7 scenes in Binggou basin dense observation area, 2008-11-19, 2008-11-26, 2008-12-06, 2009-01-10, 2009-03-04, 2009-03-30, 2009-03-31; dayokou basin dense observation area, 2009-07-13 There are two views in the observation area, 2008-10-23, 2009-06-08; one in Linze area, 2008-06-23; one in Minle area, 2008-10-22; seven in Yingke oasis dense observation area, 2008-04-30, 2008-05-09, 2008-06-04, 2008-07-01, 2008-07-19, 2009-05-31, 2009-08-10. The product level is L1 without geometric correction. Except that there are only four angles for the images of 2009-03-29 and 2009-05-24 in the Arjun encrypted observation area, each image has five different angles. The remote sensing data set of the comprehensive remote sensing joint experiment of Heihe River, proba Chris, was obtained through the "dragon plan" project (Project No.: 5322) (see the data use statement for details).